This show goes behind the scenes for the tools, techniques, and difficulties associated with the discipline of data engineering. Databases, workflows, automation, and data manipulation are just some of the topics that you will find here.
Podcast hosts
- blarghmatey
@blarghmatey
© 2023 Boundless Notions, LLC.
Data Engineering Podcast
Reviews
No reviews yet
Podcast information
- Amount of episodes
- 361
- Subscribers
- 46
- Verified
- Yes
- Website
- Explicit content
- No
- Episode type
- episodic
- Podcast link
- https://podvine.com/link/..
- Last upload date
- January 30, 2023
- Last fetch date
- February 1, 2023 7:17 AM
- Upload range
- WEEKLY
- Author
- Tobias Macey
- Copyright
- © 2023 Boundless Notions, LLC.
susbcribers
- Let Your Business Intelligence Platform Build The Models Automatically With Omni AnalyticsSummary Business intelligence has gone through many generational shifts, but each generation has largely maintained the same workflow. Data analysts create reports that are used by the business to understand and direct the business, but the process is very labor and time intensive. The team at Omni have taken a new approach by automatically building models based on the queries that are executed. In this episode Chris Merrick shares how they manage integration and automation around the modeling layer and how it improves the organizational experience of business intelligence. Announcements Hello and welcome to the Data Engineering Podcast, the show about modern data management Truly leveraging and benefiting from streaming data is hard - the data stack is costly, difficult to use and still has limitations. Materialize breaks down those barriers with a true cloud-native streaming database - not simply a database that connects to streaming systems. With a PostgreSQL-compatible interface, you can now work with real-time data using ANSI SQL including the ability to perform multi-way complex joins, which support stream-to-stream, stream-to-table, table-to-table, and more, all in standard SQL. Go to dataengineeringpodcast.com/materialize (https://www.dataengineeringpodcast.com/materialize) today and sign up for early access to get started. If you like what you see and want to help make it better, they're hiring (https://materialize.com/careers/) across all functions! Your host is Tobias Macey and today I'm interviewing Chris Merrick about the Omni Analytics platform and how they are adding automatic data modeling to your business intelligence Interview Introduction How did you get involved in the area of data management? Can you describe what Omni Analytics is and the story behind it? What are the core goals that you are trying to achieve with building Omni? Business intelligence has gone through many evolutions. What are the unique capabilities that Omni Analytics offers over other players in the market? What are the technical and organizational anti-patterns that typically grow up around BI systems? What are the elements that contribute to BI being such a difficult product to use effectively in an organization? Can you describe how you have implemented the Omni platform? How have the design/scope/goals of the product changed since you first started working on it? What does the workflow for a team using Omni look like? What are some of the developments in the broader ecosystem that have made your work possible? What are some of the positive and negative inspirations that you have drawn from the experience that you and your team-mates have gained in previous businesses? What are the most interesting, innovative, or unexpected ways that you have seen Omni used? What are the most interesting, unexpected, or challenging lessons that you have learned while working on Omni? When is Omni the wrong choice? What do you have planned for the future of Omni? Contact Info LinkedIn (https://www.linkedin.com/in/merrickchristopher/) @cmerrick (https://twitter.com/cmerrick) on Twitter Parting Question From your perspective, what is the biggest gap in the tooling or technology for data management today? Closing Announcements Thank you for listening! Don't forget to check out our other shows. Podcast.__init__ (https://www.pythonpodcast.com) covers the Python language, its community, and the innovative ways it is being used. The Machine Learning Podcast (https://www.themachinelearningpodcast.com) helps you go from idea to production with machine learning. Visit the site (https://www.dataengineeringpodcast.com) to subscribe to the show, sign up for the mailing list, and read the show notes. If you've learned something or tried out a project from the show then tell us about it! Email hosts@dataengineeringpodcast.com (mailto:hosts@dataengineeringpodcast.com)) with your story. To help other people find the show please leave a review on Apple Podcasts (https://podcasts.apple.com/us/podcast/data-engineering-podcast/id1193040557) and tell your friends and co-workers Links Omni Analytics (https://www.exploreomni.com/) Stitch (https://www.stitchdata.com/) RJ Metrics (https://en.wikipedia.org/wiki/RJMetrics) Looker (https://www.looker.com/) Podcast Episode (https://www.dataengineeringpodcast.com/looker-with-daniel-mintz-episode-55/) Singer (https://www.singer.io/) dbt (https://www.getdbt.com/) Podcast Episode (https://www.dataengineeringpodcast.com/dbt-data-analytics-episode-81/) Teradata (https://www.teradata.com/) Fivetran (https://www.fivetran.com/) Apache Arrow (https://arrow.apache.org/) Podcast Episode (https://www.dataengineeringpodcast.com/voltron-data-apache-arrow-episode-346/) DuckDB (https://duckdb.org/) Podcast Episode (https://www.dataengineeringpodcast.com/duckdb-in-process-olap-database-episode-270/) BigQuery (https://cloud.google.com/bigquery) Snowflake (https://www.snowflake.com/en/) Podcast Episode (https://www.dataengineeringpodcast.com/snowflakedb-cloud-data-warehouse-episode-110/) The intro and outro music is from The Hug (http://freemusicarchive.org/music/The_Freak_Fandango_Orchestra/Love_death_and_a_drunken_monkey/04_-_The_Hug) by The Freak Fandango Orchestra (http://freemusicarchive.org/music/The_Freak_Fandango_Orchestra/) / CC BY-SA (http://creativecommons.org/licenses/by-sa/3.0/)1 comments1
- Safely Test Your Applications And Analytics With Production Quality Data Using Tonic AISummary The most interesting and challenging bugs always happen in production, but recreating them is a constant challenge due to differences in the data that you are working with. Building your own scripts to replicate data from production is time consuming and error-prone. Tonic is a platform designed to solve the problem of having reliable, production-like data available for developing and testing your software, analytics, and machine learning projects. In this episode Adam Kamor explores the factors that make this such a complex problem to solve, the approach that he and his team have taken to turn it into a reliable product, and how you can start using it to replace your own collection of scripts. Announcements Hello and welcome to the Data Engineering Podcast, the show about modern data management Truly leveraging and benefiting from streaming data is hard - the data stack is costly, difficult to use and still has limitations. Materialize breaks down those barriers with a true cloud-native streaming database - not simply a database that connects to streaming systems. With a PostgreSQL-compatible interface, you can now work with real-time data using ANSI SQL including the ability to perform multi-way complex joins, which support stream-to-stream, stream-to-table, table-to-table, and more, all in standard SQL. Go to dataengineeringpodcast.com/materialize (https://www.dataengineeringpodcast.com/materialize) today and sign up for early access to get started. If you like what you see and want to help make it better, they're hiring (https://materialize.com/careers/) across all functions! Data and analytics leaders, 2023 is your year to sharpen your leadership skills, refine your strategies and lead with purpose. Join your peers at Gartner Data & Analytics Summit, March 20 – 22 in Orlando, FL for 3 days of expert guidance, peer networking and collaboration. Listeners can save $375 off standard rates with code GARTNERDA. Go to dataengineeringpodcast.com/gartnerda (https://www.dataengineeringpodcast.com/gartnerda) today to find out more. Your host is Tobias Macey and today I'm interviewing Adam Kamor about Tonic, a service for generating data sets that are safe for development, analytics, and machine learning Interview Introduction How did you get involved in the area of data management? Can you describe what Tonic is and the story behind it? What are the core problems that you are trying to solve? What are some of the ways that fake or obfuscated data is used in development and analytics workflows? challenges of reliably subsetting data impact of ORMs and bad habits developers get into with database modeling Can you describe how Tonic is implemented? What are the units of composition that you are building to allow for evolution and expansion of your product? How have the design and goals of the platform evolved since you started working on it? Can you describe some of the different workflows that customers build on top of your various tools What are the most interesting, innovative, or unexpected ways that you have seen Tonic used? What are the most interesting, unexpected, or challenging lessons that you have learned while working on Tonic? When is Tonic the wrong choice? What do you have planned for the future of Tonic? Contact Info LinkedIn (https://www.linkedin.com/in/adam-kamor-85720b48/) @AdamKamor (https://twitter.com/adamkamor) on Twitter Parting Question From your perspective, what is the biggest gap in the tooling or technology for data management today? Closing Announcements Thank you for listening! Don't forget to check out our other shows. Podcast.__init__ (https://www.pythonpodcast.com) covers the Python language, its community, and the innovative ways it is being used. The Machine Learning Podcast (https://www.themachinelearningpodcast.com) helps you go from idea to production with machine learning. Visit the site (https://www.dataengineeringpodcast.com) to subscribe to the show, sign up for the mailing list, and read the show notes. If you've learned something or tried out a project from the show then tell us about it! Email hosts@dataengineeringpodcast.com (mailto:hosts@dataengineeringpodcast.com)) with your story. To help other people find the show please leave a review on Apple Podcasts (https://podcasts.apple.com/us/podcast/data-engineering-podcast/id1193040557) and tell your friends and co-workers Links Tonic (https://hubs.la/Q01yX4qN0) Djinn (https://hubs.la/Q01yX4FL0) Django (https://www.djangoproject.com/) Ruby on Rails (https://rubyonrails.org/) C# (https://learn.microsoft.com/en-us/dotnet/csharp/tour-of-csharp/) Entity Framework (https://learn.microsoft.com/en-us/dotnet/csharp/tour-of-csharp/) PostgreSQL (https://www.postgresql.org/) MySQL (https://www.mysql.com/) Oracle DB (https://www.oracle.com/database/) MongoDB (https://www.mongodb.com/) Parquet (https://parquet.apache.org/) Databricks (https://www.databricks.com/) Mockaroo (https://www.mockaroo.com/) The intro and outro music is from The Hug (http://freemusicarchive.org/music/The_Freak_Fandango_Orchestra/Love_death_and_a_drunken_monkey/04_-_The_Hug) by The Freak Fandango Orchestra (http://freemusicarchive.org/music/The_Freak_Fandango_Orchestra/) / CC BY-SA (http://creativecommons.org/licenses/by-sa/3.0/)1 comments1
- Building Applications With Data As Code On The DataOSSummary The modern data stack has made it more economical to use enterprise grade technologies to power analytics at organizations of every scale. Unfortunately it has also introduced new overhead to manage the full experience as a single workflow. At the Modern Data Company they created the DataOS platform as a means of driving your full analytics lifecycle through code, while providing automatic knowledge graphs and data discovery. In this episode Srujan Akula explains how the system is implemented and how you can start using it today with your existing data systems. Announcements Hello and welcome to the Data Engineering Podcast, the show about modern data management Truly leveraging and benefiting from streaming data is hard - the data stack is costly, difficult to use and still has limitations. Materialize breaks down those barriers with a true cloud-native streaming database - not simply a database that connects to streaming systems. With a PostgreSQL-compatible interface, you can now work with real-time data using ANSI SQL including the ability to perform multi-way complex joins, which support stream-to-stream, stream-to-table, table-to-table, and more, all in standard SQL. Go to dataengineeringpodcast.com/materialize (https://www.dataengineeringpodcast.com/materialize) today and sign up for early access to get started. If you like what you see and want to help make it better, they're hiring (https://materialize.com/careers/) across all functions! Struggling with broken pipelines? Stale dashboards? Missing data? If this resonates with you, you’re not alone. Data engineers struggling with unreliable data need look no further than Monte Carlo, the leading end-to-end Data Observability Platform! Trusted by the data teams at Fox, JetBlue, and PagerDuty, Monte Carlo solves the costly problem of broken data pipelines. Monte Carlo monitors and alerts for data issues across your data warehouses, data lakes, dbt models, Airflow jobs, and business intelligence tools, reducing time to detection and resolution from weeks to just minutes. Monte Carlo also gives you a holistic picture of data health with automatic, end-to-end lineage from ingestion to the BI layer directly out of the box. Start trusting your data with Monte Carlo today! Visit dataengineeringpodcast.com/montecarlo (http://www.dataengineeringpodcast.com/montecarlo) to learn more. Data and analytics leaders, 2023 is your year to sharpen your leadership skills, refine your strategies and lead with purpose. Join your peers at Gartner Data & Analytics Summit, March 20 – 22 in Orlando, FL for 3 days of expert guidance, peer networking and collaboration. Listeners can save $375 off standard rates with code GARTNERDA. Go to dataengineeringpodcast.com/gartnerda (https://www.dataengineeringpodcast.com/gartnerda) today to find out more. Your host is Tobias Macey and today I'm interviewing Srujan Akula about DataOS, a pre-integrated and managed data platform built by The Modern Data Company Interview Introduction How did you get involved in the area of data management? Can you describe what your mission at The Modern Data Company is and the story behind it? Your flagship (only?) product is a platform that you're calling DataOS. What is the scope and goal of that platform? Who is the target audience? On your site you refer to the idea of "data as software". What are the principles and ways of thinking that are encompassed by that concept? What are the platform capabilities that are required to make it possible? There are 11 "Key Features" listed on your site for the DataOS. What was your process for identifying the "must have" vs "nice to have" features for launching the platform? Can you describe the technical architecture that powers your DataOS product? What are the core principles that you are optimizing for in the design of your platform? How have the design and goals of the system changed or evolved since you started working on DataOS? Can you describe the workflow for the different practitioners and stakeholders working on an installation of DataOS? What are the interfaces and escape hatches that are available for integrating with and extending the operation of the DataOS? What are the features or capabilities that you are expressly choosing not to implement? (e.g. ML pipelines, data sharing, etc.) What are the design elements that you are focused on to make DataOS approachable and understandable by different members of an organization? What are the most interesting, innovative, or unexpected ways that you have seen DataOS used? What are the most interesting, unexpected, or challenging lessons that you have learned while working on DataOS? When is DataOS the wrong choice? What do you have planned for the future of DataOS? Contact Info LinkedIn (https://www.linkedin.com/in/srujanakula/) @srujanakula (https://twitter.com/srujanakula) on Twitter Parting Question From your perspective, what is the biggest gap in the tooling or technology for data management today? Closing Announcements Thank you for listening! Don't forget to check out our other shows. Podcast.__init__ (https://www.pythonpodcast.com) covers the Python language, its community, and the innovative ways it is being used. The Machine Learning Podcast (https://www.themachinelearningpodcast.com) helps you go from idea to production with machine learning. Visit the site (https://www.dataengineeringpodcast.com) to subscribe to the show, sign up for the mailing list, and read the show notes. If you've learned something or tried out a project from the show then tell us about it! Email hosts@dataengineeringpodcast.com (mailto:hosts@dataengineeringpodcast.com)) with your story. To help other people find the show please leave a review on Apple Podcasts (https://podcasts.apple.com/us/podcast/data-engineering-podcast/id1193040557) and tell your friends and co-workers Links Modern Data Company (https://themoderndatacompany.com/) Alation (https://www.alation.com/) Airbyte (https://airbyte.com/) Podcast Episode (https://www.dataengineeringpodcast.com/airbyte-open-source-data-integration-episode-173/) Fivetran (https://www.fivetran.com/) Podcast Episode (https://www.dataengineeringpodcast.com/fivetran-data-replication-episode-93/) Airflow (https://airflow.apache.org/) Dremio (https://www.dremio.com/) Podcast Episode (https://www.dataengineeringpodcast.com/dremio-with-tomer-shiran-episode-58/) PrestoDB (https://prestodb.io/) GraphQL (https://graphql.org/) Cypher (https://neo4j.com/developer/cypher/) graph query language Gremlin (https://en.wikipedia.org/wiki/Gremlin_(query_language)) graph query language The intro and outro music is from The Hug (http://freemusicarchive.org/music/The_Freak_Fandango_Orchestra/Love_death_and_a_drunken_monkey/04_-_The_Hug) by The Freak Fandango Orchestra (http://freemusicarchive.org/music/The_Freak_Fandango_Orchestra/) / CC BY-SA (http://creativecommons.org/licenses/by-sa/3.0/)1 comments1
- Automate Your Pipeline Creation For Streaming Data Transformations With SQLakeSummary Managing end-to-end data flows becomes complex and unwieldy as the scale of data and its variety of applications in an organization grows. Part of this complexity is due to the transformation and orchestration of data living in disparate systems. The team at Upsolver is taking aim at this problem with the latest iteration of their platform in the form of SQLake. In this episode Ori Rafael explains how they are automating the creation and scheduling of orchestration flows and their related transforations in a unified SQL interface. Announcements Hello and welcome to the Data Engineering Podcast, the show about modern data management Data and analytics leaders, 2023 is your year to sharpen your leadership skills, refine your strategies and lead with purpose. Join your peers at Gartner Data & Analytics Summit, March 20 – 22 in Orlando, FL for 3 days of expert guidance, peer networking and collaboration. Listeners can save $375 off standard rates with code GARTNERDA. Go to dataengineeringpodcast.com/gartnerda (https://www.dataengineeringpodcast.com/gartnerda) today to find out more. Truly leveraging and benefiting from streaming data is hard - the data stack is costly, difficult to use and still has limitations. Materialize breaks down those barriers with a true cloud-native streaming database - not simply a database that connects to streaming systems. With a PostgreSQL-compatible interface, you can now work with real-time data using ANSI SQL including the ability to perform multi-way complex joins, which support stream-to-stream, stream-to-table, table-to-table, and more, all in standard SQL. Go to dataengineeringpodcast.com/materialize (https://www.dataengineeringpodcast.com/materialize) today and sign up for early access to get started. If you like what you see and want to help make it better, they're hiring (https://materialize.com/careers/) across all functions! Struggling with broken pipelines? Stale dashboards? Missing data? If this resonates with you, you’re not alone. Data engineers struggling with unreliable data need look no further than Monte Carlo, the leading end-to-end Data Observability Platform! Trusted by the data teams at Fox, JetBlue, and PagerDuty, Monte Carlo solves the costly problem of broken data pipelines. Monte Carlo monitors and alerts for data issues across your data warehouses, data lakes, dbt models, Airflow jobs, and business intelligence tools, reducing time to detection and resolution from weeks to just minutes. Monte Carlo also gives you a holistic picture of data health with automatic, end-to-end lineage from ingestion to the BI layer directly out of the box. Start trusting your data with Monte Carlo today! Visit dataengineeringpodcast.com/montecarlo (http://www.dataengineeringpodcast.com/montecarlo) to learn more. Your host is Tobias Macey and today I'm interviewing Ori Rafael about the SQLake feature for the Upsolver platform that automatically generates pipelines from your queries Interview Introduction How did you get involved in the area of data management? Can you describe what the SQLake product is and the story behind it? What is the core problem that you are trying to solve? What are some of the anti-patterns that you have seen teams adopt when designing and implementing DAGs in a tool such as Airlow? What are the benefits of merging the logic for transformation and orchestration into the same interface and dialect (SQL)? Can you describe the technical implementation of the SQLake feature? What does the workflow look like for designing and deploying pipelines in SQLake? What are the opportunities for using utilities such as dbt for managing logical complexity as the number of pipelines scales? SQL has traditionally been challenging to compose. How did that factor into your design process for how to structure the dialect extensions for job scheduling? What are some of the complexities that you have had to address in your orchestration system to be able to manage timeliness of operations as volume and complexity of the data scales? What are some of the edge cases that you have had to provide escape hatches for? What are the most interesting, innovative, or unexpected ways that you have seen SQLake used? What are the most interesting, unexpected, or challenging lessons that you have learned while working on SQLake? When is SQLake the wrong choice? What do you have planned for the future of SQLake? Contact Info LinkedIn (https://www.linkedin.com/in/ori-rafael-91723344/) Parting Question From your perspective, what is the biggest gap in the tooling or technology for data management today? Closing Announcements Thank you for listening! Don't forget to check out our other shows. Podcast.__init__ (https://www.pythonpodcast.com) covers the Python language, its community, and the innovative ways it is being used. The Machine Learning Podcast (https://www.themachinelearningpodcast.com) helps you go from idea to production with machine learning. Visit the site (https://www.dataengineeringpodcast.com) to subscribe to the show, sign up for the mailing list, and read the show notes. If you've learned something or tried out a project from the show then tell us about it! Email hosts@dataengineeringpodcast.com (mailto:hosts@dataengineeringpodcast.com)) with your story. To help other people find the show please leave a review on Apple Podcasts (https://podcasts.apple.com/us/podcast/data-engineering-podcast/id1193040557) and tell your friends and co-workers Links Upsolver (https://www.upsolver.com/) Podcast Episode (https://www.dataengineeringpodcast.com/upsolver-streaming-data-integration-episode-240/) SQLake (https://docs.upsolver.com/sqlake/) Airflow (https://airflow.apache.org/) Dagster (https://dagster.io/) Podcast Episode (https://www.dataengineeringpodcast.com/dagster-software-defined-assets-data-orchestration-episode-309/) Prefect (https://www.prefect.io/) Podcast Episode (https://www.dataengineeringpodcast.com/prefect-workflow-engine-episode-86/) Flyte (https://flyte.org/) Podcast Episode (https://www.dataengineeringpodcast.com/flyte-data-orchestration-machine-learning-episode-291/) GitHub Actions (https://github.com/features/actions) dbt (https://www.getdbt.com/) Podcast Episode (https://www.dataengineeringpodcast.com/dbt-data-analytics-episode-81/) PartiQL (https://partiql.org/) The intro and outro music is from The Hug (http://freemusicarchive.org/music/The_Freak_Fandango_Orchestra/Love_death_and_a_drunken_monkey/04_-_The_Hug) by The Freak Fandango Orchestra (http://freemusicarchive.org/music/The_Freak_Fandango_Orchestra/) / CC BY-SA (http://creativecommons.org/licenses/by-sa/3.0/)0 comments0
- Increase Your Odds Of Success For Analytics And AI Through More Effective Knowledge Management With AlignAISummary Making effective use of data requires proper context around the information that is being used. As the size and complexity of your organization increases the difficulty of ensuring that everyone has the necessary knowledge about how to get their work done scales exponentially. Wikis and intranets are a common way to attempt to solve this problem, but they are frequently ineffective. Rehgan Avon co-founded AlignAI to help address this challenge through a more purposeful platform designed to collect and distribute the knowledge of how and why data is used in a business. In this episode she shares the strategic and tactical elements of how to make more effective use of the technical and organizational resources that are available to you for getting work done with data. Announcements Hello and welcome to the Data Engineering Podcast, the show about modern data management When you're ready to build your next pipeline, or want to test out the projects you hear about on the show, you'll need somewhere to deploy it, so check out our friends at Linode. With their new managed database service you can launch a production ready MySQL, Postgres, or MongoDB cluster in minutes, with automated backups, 40 Gbps connections from your application hosts, and high throughput SSDs. Go to dataengineeringpodcast.com/linode (https://www.dataengineeringpodcast.com/linode) today and get a $100 credit to launch a database, create a Kubernetes cluster, or take advantage of all of their other services. And don't forget to thank them for their continued support of this show! Atlan is the metadata hub for your data ecosystem. Instead of locking your metadata into a new silo, unleash its transformative potential with Atlan's active metadata capabilities. Push information about data freshness and quality to your business intelligence, automatically scale up and down your warehouse based on usage patterns, and let the bots answer those questions in Slack so that the humans can focus on delivering real value. Go to dataengineeringpodcast.com/atlan (https://www.dataengineeringpodcast.com/atlan) today to learn more about how Atlan’s active metadata platform is helping pioneering data teams like Postman, Plaid, WeWork & Unilever achieve extraordinary things with metadata and escape the chaos. Struggling with broken pipelines? Stale dashboards? Missing data? If this resonates with you, you’re not alone. Data engineers struggling with unreliable data need look no further than Monte Carlo, the leading end-to-end Data Observability Platform! Trusted by the data teams at Fox, JetBlue, and PagerDuty, Monte Carlo solves the costly problem of broken data pipelines. Monte Carlo monitors and alerts for data issues across your data warehouses, data lakes, dbt models, Airflow jobs, and business intelligence tools, reducing time to detection and resolution from weeks to just minutes. Monte Carlo also gives you a holistic picture of data health with automatic, end-to-end lineage from ingestion to the BI layer directly out of the box. Start trusting your data with Monte Carlo today! Visit dataengineeringpodcast.com/montecarlo (http://www.dataengineeringpodcast.com/montecarlo) to learn more. Your host is Tobias Macey and today I'm interviewing Rehgan Avon about her work at AlignAI to help organizations standardize their technical and procedural approaches to working with data Interview Introduction How did you get involved in the area of data management? Can you describe what AlignAI is and the story behind it? What are the core problems that you are focused on addressing? What are the tactical ways that you are working to solve those problems? What are some of the common and avoidable ways that analytics/AI projects go wrong? What are some of the ways that organizational scale and complexity impacts their ability to execute on data and AI projects? What are the ways that incomplete/unevenly distributed knowledge manifests in project design and execution? Can you describe the design and implementation of the AlignAI platform? How have the goals and implementation of the product changed since you first started working on it? What is the workflow at the individual and organizational level for businesses that are using AlignAI? One of the perennial challenges with knowledge sharing in an organization is managing incentives to engage with the available material. What are some of the ways that you are working to integrate the creation and distribution of institutional knowledge into employees' day-to-day work? What are the most interesting, innovative, or unexpected ways that you have seen AlignAI used? What are the most interesting, unexpected, or challenging lessons that you have learned while working on AlignAI? When is AlignAI the wrong choice? What do you have planned for the future of AlignAI? Contact Info LinkedIn (https://www.linkedin.com/in/rehganavon/) @RehganAvon (https://twitter.com/RehganAvon) on Twitter Parting Question From your perspective, what is the biggest gap in the tooling or technology for data management today? Closing Announcements Thank you for listening! Don't forget to check out our other shows. Podcast.__init__ (https://www.pythonpodcast.com) covers the Python language, its community, and the innovative ways it is being used. The Machine Learning Podcast (https://www.themachinelearningpodcast.com) helps you go from idea to production with machine learning. Visit the site (https://www.dataengineeringpodcast.com) to subscribe to the show, sign up for the mailing list, and read the show notes. If you've learned something or tried out a project from the show then tell us about it! Email hosts@dataengineeringpodcast.com (mailto:hosts@dataengineeringpodcast.com)) with your story. To help other people find the show please leave a review on Apple Podcasts (https://podcasts.apple.com/us/podcast/data-engineering-podcast/id1193040557) and tell your friends and co-workers Links AlignAI (https://www.getalignai.com/) Sharepoint (https://en.wikipedia.org/wiki/SharePoint) Confluence (https://en.wikipedia.org/wiki/Confluence_(software)) GitHub (https://github.com/) Canva (https://www.canva.com/) Instructional Design (https://en.wikipedia.org/wiki/Instructional_design) Notion (https://www.notion.so/) Coda (https://coda.io/) Waterfall Design (https://en.wikipedia.org/wiki/Waterfall_model) dbt (https://www.getdbt.com/) Podcast Episode (https://www.dataengineeringpodcast.com/dbt-data-analytics-episode-81/) Alteryx (https://www.alteryx.com/) The intro and outro music is from The Hug (http://freemusicarchive.org/music/The_Freak_Fandango_Orchestra/Love_death_and_a_drunken_monkey/04_-_The_Hug) by The Freak Fandango Orchestra (http://freemusicarchive.org/music/The_Freak_Fandango_Orchestra/) / CC BY-SA (http://creativecommons.org/licenses/by-sa/3.0/)0 comments0
- Using Product Driven Development To Improve The Productivity And Effectiveness Of Your Data TeamsSummary With all of the messaging about treating data as a product it is becoming difficult to know what that even means. Vishal Singh is the head of products at Starburst which means that he has to spend all of his time thinking and talking about the details of product thinking and its application to data. In this episode he shares his thoughts on the strategic and tactical elements of moving your work as a data professional from being task-oriented to being product-oriented and the long term improvements in your productivity that it provides. Announcements Hello and welcome to the Data Engineering Podcast, the show about modern data management When you're ready to build your next pipeline, or want to test out the projects you hear about on the show, you'll need somewhere to deploy it, so check out our friends at Linode. With their new managed database service you can launch a production ready MySQL, Postgres, or MongoDB cluster in minutes, with automated backups, 40 Gbps connections from your application hosts, and high throughput SSDs. Go to dataengineeringpodcast.com/linode (https://www.dataengineeringpodcast.com/linode) today and get a $100 credit to launch a database, create a Kubernetes cluster, or take advantage of all of their other services. And don't forget to thank them for their continued support of this show! Modern data teams are dealing with a lot of complexity in their data pipelines and analytical code. Monitoring data quality, tracing incidents, and testing changes can be daunting and often takes hours to days or even weeks. By the time errors have made their way into production, it’s often too late and damage is done. Datafold built automated regression testing to help data and analytics engineers deal with data quality in their pull requests. Datafold shows how a change in SQL code affects your data, both on a statistical level and down to individual rows and values before it gets merged to production. No more shipping and praying, you can now know exactly what will change in your database! Datafold integrates with all major data warehouses as well as frameworks such as Airflow & dbt and seamlessly plugs into CI workflows. Visit dataengineeringpodcast.com/datafold (https://www.dataengineeringpodcast.com/datafold) today to book a demo with Datafold. RudderStack helps you build a customer data platform on your warehouse or data lake. Instead of trapping data in a black box, they enable you to easily collect customer data from the entire stack and build an identity graph on your warehouse, giving you full visibility and control. Their SDKs make event streaming from any app or website easy, and their extensive library of integrations enable you to automatically send data to hundreds of downstream tools. Sign up free at dataengineeringpodcast.com/rudder (https://www.dataengineeringpodcast.com/rudder) Build Data Pipelines. Not DAGs. That’s the spirit behind Upsolver SQLake, a new self-service data pipeline platform that lets you build batch and streaming pipelines without falling into the black hole of DAG-based orchestration. All you do is write a query in SQL to declare your transformation, and SQLake will turn it into a continuous pipeline that scales to petabytes and delivers up to the minute fresh data. SQLake supports a broad set of transformations, including high-cardinality joins, aggregations, upserts and window operations. Output data can be streamed into a data lake for query engines like Presto, Trino or Spark SQL, a data warehouse like Snowflake or Redshift., or any other destination you choose. Pricing for SQLake is simple. You pay $99 per terabyte ingested into your data lake using SQLake, and run unlimited transformation pipelines for free. That way data engineers and data users can process to their heart’s content without worrying about their cloud bill. For data engineering podcast listeners, we’re offering a 30 day trial with unlimited data, so go to dataengineeringpodcast.com/upsolver (https://www.dataengineeringpodcast.com/upsolver) today and see for yourself how to avoid DAG hell. Your host is Tobias Macey and today I'm interviewing Vishal Singh about his experience building data products at Starburst Interview Introduction How did you get involved in the area of data management? Can you describe what your definition of a "data product" is? What are some of the different contexts in which the idea of a data product is applicable? How do the parameters of a data product change across those different contexts/consumers? What are some of the ways that you see the conversation around the purpose and practice of building data products getting overloaded by conflicting objectives? What do you see as common challenges in data teams around how to approach product thinking in their day-to-day work? What are some of the tactical ways that product-oriented work on data problems differs from what has become common practice in data teams? What are some of the features that you are building at Starburst that contribute to the efforts of data teams to build full-featured product experiences for their data? What are the most interesting, innovative, or unexpected ways that you have seen Starburst used in the context of data products? What are the most interesting, unexpected, or challenging lessons that you have learned while working at Starburst? When is a data product the wrong choice? What do you have planned for the future of support for data product development at Starburst? Contact Info LinkedIn (https://www.linkedin.com/in/singhsvishal/) @vishal_singh (https://twitter.com/vishal_singh) on Twitter Parting Question From your perspective, what is the biggest gap in the tooling or technology for data management today? Closing Announcements Thank you for listening! Don't forget to check out our other shows. Podcast.__init__ (https://www.pythonpodcast.com) covers the Python language, its community, and the innovative ways it is being used. The Machine Learning Podcast (https://www.themachinelearningpodcast.com) helps you go from idea to production with machine learning. Visit the site (https://www.dataengineeringpodcast.com) to subscribe to the show, sign up for the mailing list, and read the show notes. If you've learned something or tried out a project from the show then tell us about it! Email hosts@dataengineeringpodcast.com (mailto:hosts@dataengineeringpodcast.com)) with your story. To help other people find the show please leave a review on Apple Podcasts (https://podcasts.apple.com/us/podcast/data-engineering-podcast/id1193040557) and tell your friends and co-workers Links Starburst (https://www.starburst.io/) Podcast Episode (https://www.dataengineeringpodcast.com/starburst-lakehouse-modern-data-architecture-episode-304/) Geophysics (https://en.wikipedia.org/wiki/Geophysics) Product-Led Growth (https://www.productled.org/foundations/what-is-product-led-growth) Trino (https://trino.io/) DataNova (https://www.starburst.io/datanova/) Starburst Galaxy (https://www.starburst.io/platform/starburst-galaxy/) Tableau (https://www.tableau.com/) PowerBI (https://powerbi.microsoft.com/en-us/) Podcast Episode (https://www.dataengineeringpodcast.com/power-bi-business-intelligence-episode-154/) Metabase (https://www.metabase.com/) Podcast Episode (https://www.dataengineeringpodcast.com/metabase-with-sameer-al-sakran-episode-29/) Great Expectations (https://greatexpectations.io/) Podcast Episode (https://www.dataengineeringpodcast.com/great-expectations-technical-debt-data-pipeline-episode-117/) The intro and outro music is from The Hug (http://freemusicarchive.org/music/The_Freak_Fandango_Orchestra/Love_death_and_a_drunken_monkey/04_-_The_Hug) by The Freak Fandango Orchestra (http://freemusicarchive.org/music/The_Freak_Fandango_Orchestra/) / CC BY-SA (http://creativecommons.org/licenses/by-sa/3.0/)0 comments0
- Simple And Scalable Encryption Of Data In Use For Analytics And Machine Learning With Opaque SystemsSummary Encryption and security are critical elements in data analytics and machine learning applications. We have well developed protocols and practices around data that is at rest and in motion, but security around data in use is still severely lacking. Recognizing this shortcoming and the capabilities that could be unlocked by a robust solution Rishabh Poddar helped to create Opaque Systems as an outgrowth of his PhD studies. In this episode he shares the work that he and his team have done to simplify integration of secure enclaves and trusted computing environments into analytical workflows and how you can start using it without re-engineering your existing systems. Announcements Hello and welcome to the Data Engineering Podcast, the show about modern data management When you're ready to build your next pipeline, or want to test out the projects you hear about on the show, you'll need somewhere to deploy it, so check out our friends at Linode. With their new managed database service you can launch a production ready MySQL, Postgres, or MongoDB cluster in minutes, with automated backups, 40 Gbps connections from your application hosts, and high throughput SSDs. Go to dataengineeringpodcast.com/linode (https://www.dataengineeringpodcast.com/linode) today and get a $100 credit to launch a database, create a Kubernetes cluster, or take advantage of all of their other services. And don't forget to thank them for their continued support of this show! Modern data teams are dealing with a lot of complexity in their data pipelines and analytical code. Monitoring data quality, tracing incidents, and testing changes can be daunting and often takes hours to days or even weeks. By the time errors have made their way into production, it’s often too late and damage is done. Datafold built automated regression testing to help data and analytics engineers deal with data quality in their pull requests. Datafold shows how a change in SQL code affects your data, both on a statistical level and down to individual rows and values before it gets merged to production. No more shipping and praying, you can now know exactly what will change in your database! Datafold integrates with all major data warehouses as well as frameworks such as Airflow & dbt and seamlessly plugs into CI workflows. Visit dataengineeringpodcast.com/datafold (https://www.dataengineeringpodcast.com/datafold) today to book a demo with Datafold. RudderStack helps you build a customer data platform on your warehouse or data lake. Instead of trapping data in a black box, they enable you to easily collect customer data from the entire stack and build an identity graph on your warehouse, giving you full visibility and control. Their SDKs make event streaming from any app or website easy, and their extensive library of integrations enable you to automatically send data to hundreds of downstream tools. Sign up free at dataengineeringpodcast.com/rudder (https://www.dataengineeringpodcast.com/rudder) Build Data Pipelines. Not DAGs. That’s the spirit behind Upsolver SQLake, a new self-service data pipeline platform that lets you build batch and streaming pipelines without falling into the black hole of DAG-based orchestration. All you do is write a query in SQL to declare your transformation, and SQLake will turn it into a continuous pipeline that scales to petabytes and delivers up to the minute fresh data. SQLake supports a broad set of transformations, including high-cardinality joins, aggregations, upserts and window operations. Output data can be streamed into a data lake for query engines like Presto, Trino or Spark SQL, a data warehouse like Snowflake or Redshift., or any other destination you choose. Pricing for SQLake is simple. You pay $99 per terabyte ingested into your data lake using SQLake, and run unlimited transformation pipelines for free. That way data engineers and data users can process to their heart’s content without worrying about their cloud bill. For data engineering podcast listeners, we’re offering a 30 day trial with unlimited data, so go to dataengineeringpodcast.com/upsolver (https://www.dataengineeringpodcast.com/upsolver) today and see for yourself how to avoid DAG hell. Your host is Tobias Macey and today I'm interviewing Rishabh Poddar about his work at Opaque Systems to enable secure analysis and machine learning on encrypted data Interview Introduction How did you get involved in the area of data management? Can you describe what you are building at Opaque Systems and the story behind it? What are the core problems related to security/privacy in data analytics and ML that organizations are struggling with? What do you see as the balance of internal vs. cross-organization applications for the solutions you are creating? comparison with homomorphic encryption validation and ongoing testing of security/privacy guarantees performance impact of encryption overhead and how to mitigate it UX aspects of not being able to view the underlying data risks of information leakage from schema/meta information Can you describe how the Opaque Systems platform is implemented? How have the design and scope of the product changed since you started working on it? Can you describe a typical workflow for a team or teams building an analytical process or ML project with your platform? What are some of the constraints in terms of data format/volume/variety that are introduced by working with it in the Opaque platform? How are you approaching the balance of maintaining the MC2 project against the product needs of the Opaque platform? What are the most interesting, innovative, or unexpected ways that you have seen the Opaque platform used? What are the most interesting, unexpected, or challenging lessons that you have learned while working on Opaque Systems/MC2? When is Opaque the wrong choice? What do you have planned for the future of the Opaque platform? Contact Info LinkedIn (https://www.linkedin.com/in/rishabh-poddar/) Website (https://rishabhpoddar.com/) @Podcastinator (https://twitter.com/podcastinator) on Twitter Parting Question From your perspective, what is the biggest gap in the tooling or technology for data management today? Closing Announcements Thank you for listening! Don't forget to check out our other shows. Podcast.__init__ () covers the Python language, its community, and the innovative ways it is being used. The Machine Learning Podcast (https://www.themachinelearningpodcast.com) helps you go from idea to production with machine learning. Visit the site (https://www.dataengineeringpodcast.com) to subscribe to the show, sign up for the mailing list, and read the show notes. If you've learned something or tried out a project from the show then tell us about it! Email hosts@dataengineeringpodcast.com (mailto:hosts@dataengineeringpodcast.com)) with your story. To help other people find the show please leave a review on Apple Podcasts (https://podcasts.apple.com/us/podcast/data-engineering-podcast/id1193040557) and tell your friends and co-workers Links Opaque Systems (https://opaque.co/) UC Berkeley RISE Lab (https://rise.cs.berkeley.edu/) TLS (https://en.wikipedia.org/wiki/Transport_Layer_Security) MC² (https://mc2-project.github.io/) Homomorphic Encryption (https://en.wikipedia.org/wiki/Homomorphic_encryption) Secure Multi-Party Computation (https://en.wikipedia.org/wiki/Secure_multi-party_computation) Secure Enclaves (https://opaque.co/blog/what-are-secure-enclaves/) Differential Privacy (https://en.wikipedia.org/wiki/Differential_privacy) Data Obfuscation (https://en.wikipedia.org/wiki/Data_masking) AES == Advanced Encryption Standard (https://en.wikipedia.org/wiki/Advanced_Encryption_Standard) Intel SGX (Software Guard Extensions) (https://www.intel.com/content/www/us/en/developer/tools/software-guard-extensions/overview.html) Intel TDX (Trust Domain Extensions) (https://www.intel.com/content/www/us/en/developer/articles/technical/intel-trust-domain-extensions.html) TPC-H Benchmark (https://www.tpc.org/tpch/) Spark (https://spark.apache.org/) Trino (https://trino.io/) PyTorch (https://pytorch.org/) Tensorflow (https://www.tensorflow.org/) The intro and outro music is from The Hug (http://freemusicarchive.org/music/The_Freak_Fandango_Orchestra/Love_death_and_a_drunken_monkey/04_-_The_Hug) by The Freak Fandango Orchestra (http://freemusicarchive.org/music/The_Freak_Fandango_Orchestra/) / CC BY-SA (http://creativecommons.org/licenses/by-sa/3.0/)0 comments0
- An Exploration Of Tobias' Experience In Building A Data Lakehouse From ScratchSummary Five years of hosting the Data Engineering Podcast has provided Tobias Macey with a wealth of insight into the work of building and operating data systems at a variety of scales and for myriad purposes. In order to condense that acquired knowledge into a format that is useful to everyone Scott Hirleman turns the tables in this episode and asks Tobias about the tactical and strategic aspects of his experiences applying those lessons to the work of building a data platform from scratch. Announcements Hello and welcome to the Data Engineering Podcast, the show about modern data management When you're ready to build your next pipeline, or want to test out the projects you hear about on the show, you'll need somewhere to deploy it, so check out our friends at Linode. With their new managed database service you can launch a production ready MySQL, Postgres, or MongoDB cluster in minutes, with automated backups, 40 Gbps connections from your application hosts, and high throughput SSDs. Go to dataengineeringpodcast.com/linode (https://www.dataengineeringpodcast.com/linode) today and get a $100 credit to launch a database, create a Kubernetes cluster, or take advantage of all of their other services. And don't forget to thank them for their continued support of this show! Atlan is the metadata hub for your data ecosystem. Instead of locking your metadata into a new silo, unleash its transformative potential with Atlan's active metadata capabilities. Push information about data freshness and quality to your business intelligence, automatically scale up and down your warehouse based on usage patterns, and let the bots answer those questions in Slack so that the humans can focus on delivering real value. Go to dataengineeringpodcast.com/atlan (https://www.dataengineeringpodcast.com/atlan) today to learn more about how Atlan’s active metadata platform is helping pioneering data teams like Postman, Plaid, WeWork & Unilever achieve extraordinary things with metadata and escape the chaos. Struggling with broken pipelines? Stale dashboards? Missing data? If this resonates with you, you’re not alone. Data engineers struggling with unreliable data need look no further than Monte Carlo, the leading end-to-end Data Observability Platform! Trusted by the data teams at Fox, JetBlue, and PagerDuty, Monte Carlo solves the costly problem of broken data pipelines. Monte Carlo monitors and alerts for data issues across your data warehouses, data lakes, dbt models, Airflow jobs, and business intelligence tools, reducing time to detection and resolution from weeks to just minutes. Monte Carlo also gives you a holistic picture of data health with automatic, end-to-end lineage from ingestion to the BI layer directly out of the box. Start trusting your data with Monte Carlo today! Visit dataengineeringpodcast.com/montecarlo (http://www.dataengineeringpodcast.com/montecarlo) to learn more. Your host is Tobias Macey and today I'm being interviewed by Scott Hirleman about my work on the podcasts and my experience building a data platform Interview Introduction How did you get involved in the area of data management? Data platform building journey Why are you building, who are the users/use cases How to focus on doing what matters over cool tools How to build a good UX Anything surprising or did you discover anything you didn't expect at the start How to build so it's modular and can be improved in the future General build vs buy and vendor selection process Obviously have a good BS detector - how can others build theirs So many tools, where do you start - capability need, vendor suite offering, etc. Anything surprising in doing much of this at once How do you think about TCO in build versus buy Any advice Guest call out Be brave, believe you are good enough to be on the show Look at past episodes and don't pitch the same as what's been on recently And vendors, be smart, work with your customers to come up with a good pitch for them as guests... Tobias' advice and learnings from building out a data platform: Advice: when considering a tool, start from what are you actually trying to do. Yes, everyone has tools they want to use because they are cool (or some resume-driven development). Once you have a potential tool, is the capabilty you want to use a unloved feature or a main part of the product. If it's a feature, will they give it the care and attention it needs? Advice: lean heavily on open source. You can fix things yourself and better direct the community's work than just filing a ticket and hoping with a vendor. Learning: there is likely going to be some painful pieces missing, especially around metadata, as you build out your platform. Advice: build in a modular way and think of what is my escape hatch? Yes, you have to lock yourself in a bit but build with the possibility of a vendor or a tool going away - whether that is your choice (e.g. too expensive) or it literally disappears (anyone remember FoundationDB?). Learning: be prepared for tools to connect with each other but the connection to not be as robust as you want. Again, be prepared to have metadata challenges especially. Advice: build your foundation to be strong. This will limit pain as things evolve and change. You can't build a large building on a bad foundation - or at least it's a BAD idea... Advice: spend the time to work with your data consumers to figure out what questions they want to answer. Then abstract that to build to general challenges instead of point solutions. Learning: it's easy to put data in S3 but it can be painfully difficult to query it. There's a missing piece as to how to store it for easy querying, not just the metadata issues. Advice: it's okay to pay a vendor to lessen pain. But becoming wholly reliant on them can put you in a bad spot. Advice: look to create paved path / easy path approaches. If someone wants to follow the preset path, it's easy for them. If they want to go their own way, more power to them, but not the data platform team's problem if it isn't working well. Learning: there will be places you didn't expect to bend - again, that metadata layer for Tobias - to get things done sooner. It's okay to not have the end platform built at launch, move forward and get something going. Advice: "one of the perennial problems in technlogy is the bias towards speed and action without necessarily understanding the destination." Really consider the path and if you are creating a scalable and maintainable solution instead of pushing for speed to deliver something. Advice: consider building a buffer layer between upstream sources so if there are changes, it doesn't automatically break things downstream. Tobias' data platform components: data lakehouse paradigm, Airbyte for data integration (chosen over Meltano), Trino/Starburst Galaxy for distributed querying, AWS S3 for the storage layer, AWS Glue for very basic metadata cataloguing, Dagster as the crucial orchestration layer, dbt Contact Info LinkedIn (https://www.linkedin.com/in/scotthirleman/) Parting Question From your perspective, what is the biggest gap in the tooling or technology for data management today? Closing Announcements Thank you for listening! Don't forget to check out our other shows. Podcast.__init__ () covers the Python language, its community, and the innovative ways it is being used. The Machine Learning Podcast (https://www.themachinelearningpodcast.com) helps you go from idea to production with machine learning. Visit the site (https://www.dataengineeringpodcast.com) to subscribe to the show, sign up for the mailing list, and read the show notes. If you've learned something or tried out a project from the show then tell us about it! Email hosts@dataengineeringpodcast.com (mailto:hosts@dataengineeringpodcast.com)) with your story. To help other people find the show please leave a review on Apple Podcasts (https://podcasts.apple.com/us/podcast/data-engineering-podcast/id1193040557) and tell your friends and co-workers Links Data Mesh Community (https://datameshlearning.com/community/) Podcast (https://www.linkedin.com/company/80887002/admin/) OSI Model (https://en.wikipedia.org/wiki/OSI_model) Schemata (https://schemata.app/) Podcast Episode (https://www.dataengineeringpodcast.com/schemata-schema-compatibility-utility-episode-324/) Atlan (https://atlan.com/) Podcast Episode (https://www.dataengineeringpodcast.com/atlan-data-team-collaboration-episode-179/) OpenMetadata (https://open-metadata.org/) Podcast Episode (https://www.dataengineeringpodcast.com/openmetadata-universal-metadata-layer-episode-237/) Chris Riccomini (https://daappod.com/data-mesh-radio/devops-for-data-mesh-chris-riccomini/) The intro and outro music is from The Hug (http://freemusicarchive.org/music/The_Freak_Fandango_Orchestra/Love_death_and_a_drunken_monkey/04_-_The_Hug) by The Freak Fandango Orchestra (http://freemusicarchive.org/music/The_Freak_Fandango_Orchestra/) / CC BY-SA (http://creativecommons.org/licenses/by-sa/3.0/)0 comments0
- Revisit The Fundamental Principles Of Working With Data To Avoid Getting Caught In The Hype CycleSummary The data ecosystem has seen a constant flurry of activity for the past several years, and it shows no signs of slowing down. With all of the products, techniques, and buzzwords being discussed it can be easy to be overcome by the hype. In this episode Juan Sequeda and Tim Gasper from data.world share their views on the core principles that you can use to ground your work and avoid getting caught in the hype cycles. Announcements Hello and welcome to the Data Engineering Podcast, the show about modern data management When you're ready to build your next pipeline, or want to test out the projects you hear about on the show, you'll need somewhere to deploy it, so check out our friends at Linode. With their new managed database service you can launch a production ready MySQL, Postgres, or MongoDB cluster in minutes, with automated backups, 40 Gbps connections from your application hosts, and high throughput SSDs. Go to dataengineeringpodcast.com/linode (https://www.dataengineeringpodcast.com/linode) today and get a $100 credit to launch a database, create a Kubernetes cluster, or take advantage of all of their other services. And don't forget to thank them for their continued support of this show! Modern data teams are dealing with a lot of complexity in their data pipelines and analytical code. Monitoring data quality, tracing incidents, and testing changes can be daunting and often takes hours to days or even weeks. By the time errors have made their way into production, it’s often too late and damage is done. Datafold built automated regression testing to help data and analytics engineers deal with data quality in their pull requests. Datafold shows how a change in SQL code affects your data, both on a statistical level and down to individual rows and values before it gets merged to production. No more shipping and praying, you can now know exactly what will change in your database! Datafold integrates with all major data warehouses as well as frameworks such as Airflow & dbt and seamlessly plugs into CI workflows. Visit dataengineeringpodcast.com/datafold (https://www.dataengineeringpodcast.com/datafold) today to book a demo with Datafold. RudderStack helps you build a customer data platform on your warehouse or data lake. Instead of trapping data in a black box, they enable you to easily collect customer data from the entire stack and build an identity graph on your warehouse, giving you full visibility and control. Their SDKs make event streaming from any app or website easy, and their extensive library of integrations enable you to automatically send data to hundreds of downstream tools. Sign up free at dataengineeringpodcast.com/rudder (https://www.dataengineeringpodcast.com/rudder) Build Data Pipelines. Not DAGs. That’s the spirit behind Upsolver SQLake, a new self-service data pipeline platform that lets you build batch and streaming pipelines without falling into the black hole of DAG-based orchestration. All you do is write a query in SQL to declare your transformation, and SQLake will turn it into a continuous pipeline that scales to petabytes and delivers up to the minute fresh data. SQLake supports a broad set of transformations, including high-cardinality joins, aggregations, upserts and window operations. Output data can be streamed into a data lake for query engines like Presto, Trino or Spark SQL, a data warehouse like Snowflake or Redshift., or any other destination you choose. Pricing for SQLake is simple. You pay $99 per terabyte ingested into your data lake using SQLake, and run unlimited transformation pipelines for free. That way data engineers and data users can process to their heart’s content without worrying about their cloud bill. For data engineering podcast listeners, we’re offering a 30 day trial with unlimited data, so go to dataengineeringpodcast.com/upsolver (https://www.dataengineeringpodcast.com/upsolver) today and see for yourself how to avoid DAG hell. Your host is Tobias Macey and today I'm interviewing Juan Sequeda and Tim Gasper about their views on the role of the data mesh paradigm for driving re-assessment of the foundational principles of data systems Interview Introduction How did you get involved in the area of data management? What are the areas of the data ecosystem that you see the most turmoil and confusion? The past couple of years have brought a lot of attention to the idea of the "modern data stack". How has that influenced the ways that your and your customers' teams think about what skills they need to be effective? The other topic that is introducing a lot of confusion and uncertainty is the "data mesh". How has that changed the ways that teams think about who is involved in the technical and design conversations around data in an organization? Now that we, as an industry, have reached a new generational inflection about how data is generated, processed, and used, what are some of the foundational principles that have proven their worth? What are some of the new lessons that are showing the greatest promise? data modeling data platform/infrastructure data collaboration data governance/security/privacy How does your work at data.world work support these foundational practices? What are some of the ways that you work with your teams and customers to help them stay informed on industry practices? What is your process for understanding the balance between hype and reality as you encounter new ideas/technologies? What are some of the notable changes that have happened in the data.world product and market since I last had Bryon on the show in 2017? What are the most interesting, innovative, or unexpected ways that you have seen data.world used? What are the most interesting, unexpected, or challenging lessons that you have learned while working on data.world? When is data.world the wrong choice? What do you have planned for the future of data.world? Contact Info Juan LinkedIn (https://www.linkedin.com/in/juansequeda/) @juansequeda (https://twitter.com/juansequeda) on Twitter Website (https://www.juansequeda.com/) Tim LinkedIn (https://www.linkedin.com/in/timgasper/) @TimGasper (https://twitter.com/TimGasper) on Twitter Website (https://www.timgasper.com/) Parting Question From your perspective, what is the biggest gap in the tooling or technology for data management today? Closing Announcements Thank you for listening! Don't forget to check out our other shows. Podcast.__init__ () covers the Python language, its community, and the innovative ways it is being used. The Machine Learning Podcast (https://www.themachinelearningpodcast.com) helps you go from idea to production with machine learning. Visit the site (https://www.dataengineeringpodcast.com) to subscribe to the show, sign up for the mailing list, and read the show notes. If you've learned something or tried out a project from the show then tell us about it! Email hosts@dataengineeringpodcast.com (mailto:hosts@dataengineeringpodcast.com)) with your story. To help other people find the show please leave a review on Apple Podcasts (https://podcasts.apple.com/us/podcast/data-engineering-podcast/id1193040557) and tell your friends and co-workers Links data.world (https://data.world/) Podcast Episode (https://www.dataengineeringpodcast.com/data-dot-world-with-bryon-jacob-episode-9/) Gartner Hype Cycle (https://www.gartner.com/en/information-technology/glossary/hype-cycle) Data Mesh (https://www.thoughtworks.com/en-us/what-we-do/data-and-ai/data-mesh) Modern Data Stack (https://tanay.substack.com/p/understanding-the-modern-data-stack) DataOps (https://en.wikipedia.org/wiki/DataOps) Data Observability (https://www.montecarlodata.com/blog-what-is-data-observability/) Data & AI Landscape (https://mattturck.com/data2021/) DataDog (https://www.datadoghq.com/) RDF == Resource Description Framework (https://en.wikipedia.org/wiki/Resource_Description_Framework) SPARQL (https://en.wikipedia.org/wiki/SPARQL) Moshe Vardi (https://en.wikipedia.org/wiki/Moshe_Vardi) Star Schema (https://en.wikipedia.org/wiki/Star_schema) Data Vault (https://en.wikipedia.org/wiki/Data_vault_modeling) Podcast Episode (https://www.dataengineeringpodcast.com/data-vault-data-modeling-episode-119/) BPMN == Business Process Modeling Notation (https://en.wikipedia.org/wiki/Business_Process_Model_and_Notation) The intro and outro music is from The Hug (http://freemusicarchive.org/music/The_Freak_Fandango_Orchestra/Love_death_and_a_drunken_monkey/04_-_The_Hug) by The Freak Fandango Orchestra (http://freemusicarchive.org/music/The_Freak_Fandango_Orchestra/) / CC BY-SA (http://creativecommons.org/licenses/by-sa/3.0/)1 comments1
- Making Sense Of The Technical And Organizational Considerations Of Data ContractsSummary One of the reasons that data work is so challenging is because no single person or team owns the entire process. This introduces friction in the process of collecting, processing, and using data. In order to reduce the potential for broken pipelines some teams have started to adopt the idea of data contracts. In this episode Abe Gong brings his experiences with the Great Expectations project and community to discuss the technical and organizational considerations involved in implementing these constraints to your data workflows. Announcements Hello and welcome to the Data Engineering Podcast, the show about modern data management When you're ready to build your next pipeline, or want to test out the projects you hear about on the show, you'll need somewhere to deploy it, so check out our friends at Linode. With their new managed database service you can launch a production ready MySQL, Postgres, or MongoDB cluster in minutes, with automated backups, 40 Gbps connections from your application hosts, and high throughput SSDs. Go to dataengineeringpodcast.com/linode (https://www.dataengineeringpodcast.com/linode) today and get a $100 credit to launch a database, create a Kubernetes cluster, or take advantage of all of their other services. And don't forget to thank them for their continued support of this show! Atlan is the metadata hub for your data ecosystem. Instead of locking your metadata into a new silo, unleash its transformative potential with Atlan's active metadata capabilities. Push information about data freshness and quality to your business intelligence, automatically scale up and down your warehouse based on usage patterns, and let the bots answer those questions in Slack so that the humans can focus on delivering real value. Go to dataengineeringpodcast.com/atlan (https://www.dataengineeringpodcast.com/atlan) today to learn more about how Atlan’s active metadata platform is helping pioneering data teams like Postman, Plaid, WeWork & Unilever achieve extraordinary things with metadata and escape the chaos. Struggling with broken pipelines? Stale dashboards? Missing data? If this resonates with you, you’re not alone. Data engineers struggling with unreliable data need look no further than Monte Carlo, the leading end-to-end Data Observability Platform! Trusted by the data teams at Fox, JetBlue, and PagerDuty, Monte Carlo solves the costly problem of broken data pipelines. Monte Carlo monitors and alerts for data issues across your data warehouses, data lakes, dbt models, Airflow jobs, and business intelligence tools, reducing time to detection and resolution from weeks to just minutes. Monte Carlo also gives you a holistic picture of data health with automatic, end-to-end lineage from ingestion to the BI layer directly out of the box. Start trusting your data with Monte Carlo today! Visit dataengineeringpodcast.com/montecarlo (http://www.dataengineeringpodcast.com/montecarlo) to learn more. Your host is Tobias Macey and today I'm interviewing Abe Gong about the technical and organizational implementation of data contracts Interview Introduction How did you get involved in the area of data management? Can you describe what your conception of a data contract is? What are some of the ways that you have seen them implemented? How has your work on Great Expectations influenced your thinking on the strategic and tactical aspects of adopting/implementing data contracts in a given team/organization? What does the negotiation process look like for identifying what needs to be included in a contract? What are the interfaces/integration points where data contracts are most useful/necessary? What are the discussions that need to happen when deciding when/whether a contract "violation" is a blocking action vs. issuing a notification? At what level of detail/granularity are contracts most helpful? At the technical level, what does the implementation/integration/deployment of a contract look like? What are the most interesting, innovative, or unexpected ways that you have seen data contracts used? What are the most interesting, unexpected, or challenging lessons that you have learned while working on data contracts/great expectations? When are data contracts the wrong choice? What do you have planned for the future of data contracts in great expectations? Contact Info LinkedIn (https://www.linkedin.com/in/abe-gong-8a77034/) @AbeGong (https://twitter.com/AbeGong) on Twitter Website (https://www.abegong.com/) Parting Question From your perspective, what is the biggest gap in the tooling or technology for data management today? Closing Announcements Thank you for listening! Don't forget to check out our other shows. Podcast.__init__ () covers the Python language, its community, and the innovative ways it is being used. The Machine Learning Podcast (https://www.themachinelearningpodcast.com) helps you go from idea to production with machine learning. Visit the site (https://www.dataengineeringpodcast.com) to subscribe to the show, sign up for the mailing list, and read the show notes. If you've learned something or tried out a project from the show then tell us about it! Email hosts@dataengineeringpodcast.com (mailto:hosts@dataengineeringpodcast.com)) with your story. To help other people find the show please leave a review on Apple Podcasts (https://podcasts.apple.com/us/podcast/data-engineering-podcast/id1193040557) and tell your friends and co-workers Links Great Expectations (https://www.abegong.com/) Podcast Episode (https://www.dataengineeringpodcast.com/great-expectations-technical-debt-data-pipeline-episode-117/) Progressive Typing (https://en.wikipedia.org/wiki/Gradual_typing) Pioneers, Settlers, Town Planners (https://blog.gardeviance.org/2015/03/on-pioneers-settlers-town-planners-and.html) Pydantic (https://pydantic-docs.helpmanual.io/) Podcast.__init__ Episode (https://www.pythonpodcast.com/pydantic-data-validation-episode-263/) Typescript (https://www.typescriptlang.org/) Duck Typing (https://en.wikipedia.org/wiki/Duck_typing) Flyte (https://flyte.org/) Podcast Episode (https://www.dataengineeringpodcast.com/flyte-data-orchestration-machine-learning-episode-291/) Dagster (https://dagster.io/) Podcast Episode (https://www.dataengineeringpodcast.com/dagster-software-defined-assets-data-orchestration-episode-309) Trino (https://trino.io/) The intro and outro music is from The Hug (http://freemusicarchive.org/music/The_Freak_Fandango_Orchestra/Love_death_and_a_drunken_monkey/04_-_The_Hug) by The Freak Fandango Orchestra (http://freemusicarchive.org/music/The_Freak_Fandango_Orchestra/) / CC BY-SA (http://creativecommons.org/licenses/by-sa/3.0/)1 comments1
- Convert Your Unstructured Data To Embedding Vectors For More Efficient Machine Learning With TowheePreamble This is a cross-over episode from our new show The Machine Learning Podcast, the show about going from idea to production with machine learning. Summary Data is one of the core ingredients for machine learning, but the format in which it is understandable to humans is not a useful representation for models. Embedding vectors are a way to structure data in a way that is native to how models interpret and manipulate information. In this episode Frank Liu shares how the Towhee library simplifies the work of translating your unstructured data assets (e.g. images, audio, video, etc.) into embeddings that you can use efficiently for machine learning, and how it fits into your workflow for model development. Announcements Hello and welcome to the Machine Learning Podcast, the podcast about machine learning and how to bring it from idea to delivery. Building good ML models is hard, but testing them properly is even harder. At Deepchecks, they built an open-source testing framework that follows best practices, ensuring that your models behave as expected. Get started quickly using their built-in library of checks for testing and validating your model’s behavior and performance, and extend it to meet your specific needs as your model evolves. Accelerate your machine learning projects by building trust in your models and automating the testing that you used to do manually. Go to themachinelearningpodcast.com/deepchecks today to get started! Your host is Tobias Macey and today I’m interviewing Frank Liu about how to use vector embeddings in your ML projects and how Towhee can reduce the effort involved Interview Introduction How did you get involved in machine learning? Can you describe what Towhee is and the story behind it? What is the problem that Towhee is aimed at solving? What are the elements of generating vector embeddings that pose the greatest challenge or require the most effort? Once you have an embedding, what are some of the ways that it might be used in a machine learning project? Are there any design considerations that need to be addressed in the form that an embedding takes and how it impacts the resultant model that relies on it? (whether for training or inference) Can you describe how the Towhee framework is implemented? What are some of the interesting engineering challenges that needed to be addressed? How have the design/goals/scope of the project shifted since it began? What is the workflow for someone using Towhee in the context of an ML project? What are some of the types optimizations that you have incorporated into Towhee? What are some of the scaling considerations that users need to be aware of as they increase the volume or complexity of data that they are processing? What are some of the ways that using Towhee impacts the way a data scientist or ML engineer approach the design development of their model code? What are the interfaces available for integrating with and extending Towhee? What are the most interesting, innovative, or unexpected ways that you have seen Towhee used? What are the most interesting, unexpected, or challenging lessons that you have learned while working on Towhee? When is Towhee the wrong choice? What do you have planned for the future of Towhee? Contact Info LinkedIn fzliu on GitHub Website @frankzliu on Twitter Parting Question From your perspective, what is the biggest barrier to adoption of machine learning today? Closing Announcements Thank you for listening! Don’t forget to check out our other shows. The Data Engineering Podcast covers the latest on modern data management. Podcast.__init__ covers the Python language, its community, and the innovative ways it is being used. Visit the site to subscribe to the show, sign up for the mailing list, and read the show notes. If you’ve learned something or tried out a project from the show then tell us about it! Email hosts@themachinelearningpodcast.com) with your story. To help other people find the show please leave a review on iTunes and tell your friends and co-workers Links Towhee Zilliz Milvus Data Engineering Podcast Episode Computer Vision Tensor Autoencoder Latent Space Diffusion Model HSL == Hue, Saturation, Lightness Weights and Biases The intro and outro music is from Hitman’s Lovesong feat. Paola Graziano by The Freak Fandango Orchestra / CC BY-SA 3.01 comments1
- Run Your Applications Worldwide Without Worrying About The Database With PlanetscaleSummary One of the most critical aspects of software projects is managing its data. Managing the operational concerns for your database can be complex and expensive, especially if you need to scale to large volumes of data, high traffic, or geographically distributed usage. Planetscale is a serverless option for your MySQL workloads that lets you focus on your applications without having to worry about managing the database or fight with differences between development and production. In this episode Nick van Wiggeren explains how the Planetscale platform is implemented, their strategies for balancing maintenance and improvements of the underlying Vitess project with their business goals, and how you can start using it today to free up the time you spend on database administration. Announcements Hello and welcome to the Data Engineering Podcast, the show about modern data management When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With their new managed database service you can launch a production ready MySQL, Postgres, or MongoDB cluster in minutes, with automated backups, 40 Gbps connections from your application hosts, and high throughput SSDs. Go to dataengineeringpodcast.com/linode today and get a $100 credit to launch a database, create a Kubernetes cluster, or take advantage of all of their other services. And don’t forget to thank them for their continued support of this show! Modern data teams are dealing with a lot of complexity in their data pipelines and analytical code. Monitoring data quality, tracing incidents, and testing changes can be daunting and often takes hours to days or even weeks. By the time errors have made their way into production, it’s often too late and damage is done. Datafold built automated regression testing to help data and analytics engineers deal with data quality in their pull requests. Datafold shows how a change in SQL code affects your data, both on a statistical level and down to individual rows and values before it gets merged to production. No more shipping and praying, you can now know exactly what will change in your database! Datafold integrates with all major data warehouses as well as frameworks such as Airflow & dbt and seamlessly plugs into CI workflows. Visit dataengineeringpodcast.com/datafold today to book a demo with Datafold. RudderStack helps you build a customer data platform on your warehouse or data lake. Instead of trapping data in a black box, they enable you to easily collect customer data from the entire stack and build an identity graph on your warehouse, giving you full visibility and control. Their SDKs make event streaming from any app or website easy, and their extensive library of integrations enable you to automatically send data to hundreds of downstream tools. Sign up free at dataengineeringpodcast.com/rudder Build Data Pipelines. Not DAGs. That’s the spirit behind Upsolver SQLake, a new self-service data pipeline platform that lets you build batch and streaming pipelines without falling into the black hole of DAG-based orchestration. All you do is write a query in SQL to declare your transformation, and SQLake will turn it into a continuous pipeline that scales to petabytes and delivers up to the minute fresh data. SQLake supports a broad set of transformations, including high-cardinality joins, aggregations, upserts and window operations. Output data can be streamed into a data lake for query engines like Presto, Trino or Spark SQL, a data warehouse like Snowflake or Redshift., or any other destination you choose. Pricing for SQLake is simple. You pay $99 per terabyte ingested into your data lake using SQLake, and run unlimited transformation pipelines for free. That way data engineers and data users can process to their heart’s content without worrying about their cloud bill. For data engineering podcast listeners, we’re offering a 30 day trial with unlimited data, so go to dataengineeringpodcast.com/upsolver today and see for yourself how to avoid DAG hell. Your host is Tobias Macey and today I’m interviewing Nick van Wiggeren about Planetscale, a serverless and globally distributed MySQL database as a service Interview Introduction How did you get involved in the area of data management? Can you describe what Planetscale is and the story behind it? What are the core problems that you are solving with the Planetscale platform? How might an engineering team address those challenges in the absence of Planetscale/Vitess? Can you describe how Planetscale is implemented? What are some of the addons that you have had to build on top of Vitess to make Planetscale What are the impacts that a serverless database has on the way teams approach their application/platform design and development? metrics exposed to help users optimize their usage What is your policy/philosophy for determining what capabilities to include in Vitess and what belongs in the Planetscale platform? What are the most interesting, innovative, or unexpected ways that you have seen Planetscale/Vitess used? What are the most interesting, unexpected, or challenging lessons that you have learned while working on Planetscale? When is Planetscale the wrong choice? What do you have planned for the future of Planetscale? Contact Info @nickvanwig on Twitter LinkedIn nickvanw on GitHub Parting Question From your perspective, what is the biggest gap in the tooling or technology for data management today? Closing Announcements Thank you for listening! Don’t forget to check out our other shows. Podcast.__init__ covers the Python language, its community, and the innovative ways it is being used. The Machine Learning Podcast helps you go from idea to production with machine learning. Visit the site to subscribe to the show, sign up for the mailing list, and read the show notes. If you’ve learned something or tried out a project from the show then tell us about it! Email hosts@dataengineeringpodcast.com) with your story. To help other people find the show please leave a review on Apple Podcasts and tell your friends and co-workers Links Planetscale Vitess CNCF == Cloud Native Computing Foundation Hadoop OLTP == Online Transactional Processing Galera Yugabyte DB Podcast Episode CitusDB MariaDB SkySQL Podcast Episode CockroachDB Podcast Episode NewSQL AWS PrivateLink Planetscale Connect Segment Podcast Episode BigQuery The intro and outro music is from The Hug by The Freak Fandango Orchestra / CC BY-SA1 comments1
- Business Intelligence In The Palm Of Your Hand With Zing DataSummary Business intelligence is the foremost application of data in organizations of all sizes. The typical conception of how it is accessed is through a web or desktop application running on a powerful laptop. Zing Data is building a mobile native platform for business intelligence. This opens the door for busy employees to access and analyze their company information away from their desk, but it has the more powerful effect of bringing first-class support to companies operating in mobile-first economies. In this episode Sabin Thomas shares his experiences building the platform and the interesting ways that it is being used. Announcements Hello and welcome to the Data Engineering Podcast, the show about modern data management When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With their new managed database service you can launch a production ready MySQL, Postgres, or MongoDB cluster in minutes, with automated backups, 40 Gbps connections from your application hosts, and high throughput SSDs. Go to dataengineeringpodcast.com/linode today and get a $100 credit to launch a database, create a Kubernetes cluster, or take advantage of all of their other services. And don’t forget to thank them for their continued support of this show! Atlan is the metadata hub for your data ecosystem. Instead of locking your metadata into a new silo, unleash its transformative potential with Atlan’s active metadata capabilities. Push information about data freshness and quality to your business intelligence, automatically scale up and down your warehouse based on usage patterns, and let the bots answer those questions in Slack so that the humans can focus on delivering real value. Go to dataengineeringpodcast.com/atlan today to learn more about how Atlan’s active metadata platform is helping pioneering data teams like Postman, Plaid, WeWork & Unilever achieve extraordinary things with metadata and escape the chaos. Data engineers don’t enjoy writing, maintaining, and modifying ETL pipelines all day, every day. Especially once they realize 90% of all major data sources like Google Analytics, Salesforce, Adwords, Facebook, Spreadsheets, etc., are already available as plug-and-play connectors with reliable, intuitive SaaS solutions. Hevo Data is a highly reliable and intuitive data pipeline platform used by data engineers from 40+ countries to set up and run low-latency ELT pipelines with zero maintenance. Boasting more than 150 out-of-the-box connectors that can be set up in minutes, Hevo also allows you to monitor and control your pipelines. You get: real-time data flow visibility, fail-safe mechanisms, and alerts if anything breaks; preload transformations and auto-schema mapping precisely control how data lands in your destination; models and workflows to transform data for analytics; and reverse-ETL capability to move the transformed data back to your business software to inspire timely action. All of this, plus its transparent pricing and 24*7 live support, makes it consistently voted by users as the Leader in the Data Pipeline category on review platforms like G2. Go to dataengineeringpodcast.com/hevodata and sign up for a free 14-day trial that also comes with 24×7 support. Struggling with broken pipelines? Stale dashboards? Missing data? If this resonates with you, you’re not alone. Data engineers struggling with unreliable data need look no further than Monte Carlo, the leading end-to-end Data Observability Platform! Trusted by the data teams at Fox, JetBlue, and PagerDuty, Monte Carlo solves the costly problem of broken data pipelines. Monte Carlo monitors and alerts for data issues across your data warehouses, data lakes, dbt models, Airflow jobs, and business intelligence tools, reducing time to detection and resolution from weeks to just minutes. Monte Carlo also gives you a holistic picture of data health with automatic, end-to-end lineage from ingestion to the BI layer directly out of the box. Start trusting your data with Monte Carlo today! Visit dataengineeringpodcast.com/montecarlo to learn more. Your host is Tobias Macey and today I’m interviewing Sabin Thomas about Zing Data, a mobile-friendly business intelligence platform Interview Introduction How did you get involved in the area of data management? Can you describe what Zing Data is and the story behind it? Why is mobile access to a business intelligence system important? What does it mean for a business intelligence system to be mobile friendly? (e.g. just looking at charts vs. creating reports, etc.) What are the interaction patterns that don’t translate well to mobile from web or desktop BI systems? What are the new interaction patterns that are enabled by the mobile experience? What are the capabilities that a native app can provide which would be clunky or impossible as a web app on a mobile device? Who are the personas that benefit from a product like Zing Data? Can you describe how the platform (backend and app) are implemented? How have the design and goals of the system changed/evolved since you started working on it? Can you describe a typical workflow for a team that uses Zing? Is it typically the sole/primary BI system, or is it more of an augmentation? What are the most interesting, innovative, or unexpected ways that you have seen Zing used? What are the most interesting, unexpected, or challenging lessons that you have learned while working on Zing? When is Zing the wrong choice? What do you have planned for the future of Zing Data? Contact Info LinkedIn Parting Question From your perspective, what is the biggest gap in the tooling or technology for data management today? Closing Announcements Thank you for listening! Don’t forget to check out our other shows. Podcast.__init__ covers the Python language, its community, and the innovative ways it is being used. The Machine Learning Podcast helps you go from idea to production with machine learning. Visit the site to subscribe to the show, sign up for the mailing list, and read the show notes. If you’ve learned something or tried out a project from the show then tell us about it! Email hosts@dataengineeringpodcast.com) with your story. To help other people find the show please leave a review on Apple Podcasts and tell your friends and co-workers Links Zing Data Rakuten Flutter Cordova React Native T-SQL ANSI SQL The intro and outro music is from The Hug by The Freak Fandango Orchestra / CC BY-SA1 comments1
- Adopting Real-Time Data At Organizations Of Every SizeSummary The term "real-time data" brings with it a combination of excitement, uncertainty, and skepticism. The promise of insights that are always accurate and up to date is appealing to organizations, but the technical realities to make it possible have been complex and expensive. In this episode Arjun Narayan explains how the technical barriers to adopting real-time data in your analytics and applications have become surmountable by organizations of all sizes. Announcements Hello and welcome to the Data Engineering Podcast, the show about modern data management When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With their new managed database service you can launch a production ready MySQL, Postgres, or MongoDB cluster in minutes, with automated backups, 40 Gbps connections from your application hosts, and high throughput SSDs. Go to dataengineeringpodcast.com/linode today and get a $100 credit to launch a database, create a Kubernetes cluster, or take advantage of all of their other services. And don’t forget to thank them for their continued support of this show! Modern data teams are dealing with a lot of complexity in their data pipelines and analytical code. Monitoring data quality, tracing incidents, and testing changes can be daunting and often takes hours to days or even weeks. By the time errors have made their way into production, it’s often too late and damage is done. Datafold built automated regression testing to help data and analytics engineers deal with data quality in their pull requests. Datafold shows how a change in SQL code affects your data, both on a statistical level and down to individual rows and values before it gets merged to production. No more shipping and praying, you can now know exactly what will change in your database! Datafold integrates with all major data warehouses as well as frameworks such as Airflow & dbt and seamlessly plugs into CI workflows. Visit dataengineeringpodcast.com/datafold today to book a demo with Datafold. RudderStack helps you build a customer data platform on your warehouse or data lake. Instead of trapping data in a black box, they enable you to easily collect customer data from the entire stack and build an identity graph on your warehouse, giving you full visibility and control. Their SDKs make event streaming from any app or website easy, and their extensive library of integrations enable you to automatically send data to hundreds of downstream tools. Sign up free at dataengineeringpodcast.com/rudder Build Data Pipelines. Not DAGs. That’s the spirit behind Upsolver SQLake, a new self-service data pipeline platform that lets you build batch and streaming pipelines without falling into the black hole of DAG-based orchestration. All you do is write a query in SQL to declare your transformation, and SQLake will turn it into a continuous pipeline that scales to petabytes and delivers up to the minute fresh data. SQLake supports a broad set of transformations, including high-cardinality joins, aggregations, upserts and window operations. Output data can be streamed into a data lake for query engines like Presto, Trino or Spark SQL, a data warehouse like Snowflake or Redshift., or any other destination you choose. Pricing for SQLake is simple. You pay $99 per terabyte ingested into your data lake using SQLake, and run unlimited transformation pipelines for free. That way data engineers and data users can process to their heart’s content without worrying about their cloud bill. For data engineering podcast listeners, we’re offering a 30 day trial with unlimited data, so go to dataengineeringpodcast.com/upsolver today and see for yourself how to avoid DAG hell. Your host is Tobias Macey and today I’m interviewing Arjun Narayan about the benefits of real-time data for teams of all sizes Interview Introduction How did you get involved in the area of data management? Can you describe what your conception of real-time data is and the benefits that it can provide? types of organizations/teams who are adopting real-time consumers of real-time data locations in data/application stacks where real-time needs to be integrated challenges (technical/infrastructure/talent) involved in adopting/supporting streaming/real-time lessons learned working with early customers that influenced design/implementation of Materialize to simplify adoption of real-time types of queries that are run on materialize vs. warehouse how real-time changes the way stakeholders think about the data sourcing real-time data What are the most interesting, innovative, or unexpected ways that you have seen real-time data used? What are the most interesting, unexpected, or challenging lessons that you have learned while working on Materialize to support real-time data applications? When is real-time the wrong choice? What do you have planned for the future of Materialize and real-time data? Contact Info @narayanarjun on Twitter Email LinkedIn Parting Question From your perspective, what is the biggest gap in the tooling or technology for data management today? Closing Announcements Thank you for listening! Don’t forget to check out our other shows. Podcast.__init__ covers the Python language, its community, and the innovative ways it is being used. The Machine Learning Podcast helps you go from idea to production with machine learning. Visit the site to subscribe to the show, sign up for the mailing list, and read the show notes. If you’ve learned something or tried out a project from the show then tell us about it! Email hosts@dataengineeringpodcast.com) with your story. To help other people find the show please leave a review on Apple Podcasts and tell your friends and co-workers Links Materialize Podcast Episode Cockroach Labs Podcast Episode SQL Kafka Debezium Podcast Episode Change Data Capture Reverse ETL Pulsar Podcast Episode The intro and outro music is from The Hug by The Freak Fandango Orchestra / CC BY-SA1 comments1
- Supporting And Expanding The Arrow Ecosystem For Fast And Efficient Data Processing At Voltron DataSummary The data ecosystem has been growing rapidly, with new communities joining and bringing their preferred programming languages to the mix. This has led to inefficiencies in how data is stored, accessed, and shared across process and system boundaries. The Arrow project is designed to eliminate wasted effort in translating between languages, and Voltron Data was created to help grow and support its technology and community. In this episode Wes McKinney shares the ways that Arrow and its related projects are improving the efficiency of data systems and driving their next stage of evolution. Announcements Hello and welcome to the Data Engineering Podcast, the show about modern data management When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With their new managed database service you can launch a production ready MySQL, Postgres, or MongoDB cluster in minutes, with automated backups, 40 Gbps connections from your application hosts, and high throughput SSDs. Go to dataengineeringpodcast.com/linode today and get a $100 credit to launch a database, create a Kubernetes cluster, or take advantage of all of their other services. And don’t forget to thank them for their continued support of this show! Atlan is the metadata hub for your data ecosystem. Instead of locking your metadata into a new silo, unleash its transformative potential with Atlan’s active metadata capabilities. Push information about data freshness and quality to your business intelligence, automatically scale up and down your warehouse based on usage patterns, and let the bots answer those questions in Slack so that the humans can focus on delivering real value. Go to dataengineeringpodcast.com/atlan today to learn more about how Atlan’s active metadata platform is helping pioneering data teams like Postman, Plaid, WeWork & Unilever achieve extraordinary things with metadata and escape the chaos. Struggling with broken pipelines? Stale dashboards? Missing data? If this resonates with you, you’re not alone. Data engineers struggling with unreliable data need look no further than Monte Carlo, the leading end-to-end Data Observability Platform! Trusted by the data teams at Fox, JetBlue, and PagerDuty, Monte Carlo solves the costly problem of broken data pipelines. Monte Carlo monitors and alerts for data issues across your data warehouses, data lakes, dbt models, Airflow jobs, and business intelligence tools, reducing time to detection and resolution from weeks to just minutes. Monte Carlo also gives you a holistic picture of data health with automatic, end-to-end lineage from ingestion to the BI layer directly out of the box. Start trusting your data with Monte Carlo today! Visit dataengineeringpodcast.com/montecarlo to learn more. Data engineers don’t enjoy writing, maintaining, and modifying ETL pipelines all day, every day. Especially once they realize 90% of all major data sources like Google Analytics, Salesforce, Adwords, Facebook, Spreadsheets, etc., are already available as plug-and-play connectors with reliable, intuitive SaaS solutions. Hevo Data is a highly reliable and intuitive data pipeline platform used by data engineers from 40+ countries to set up and run low-latency ELT pipelines with zero maintenance. Boasting more than 150 out-of-the-box connectors that can be set up in minutes, Hevo also allows you to monitor and control your pipelines. You get: real-time data flow visibility, fail-safe mechanisms, and alerts if anything breaks; preload transformations and auto-schema mapping precisely control how data lands in your destination; models and workflows to transform data for analytics; and reverse-ETL capability to move the transformed data back to your business software to inspire timely action. All of this, plus its transparent pricing and 24*7 live support, makes it consistently voted by users as the Leader in the Data Pipeline category on review platforms like G2. Go to dataengineeringpodcast.com/hevodata and sign up for a free 14-day trial that also comes with 24×7 support. Your host is Tobias Macey and today I’m interviewing Wes McKinney about his work at Voltron Data and on the Arrow ecosystem Interview Introduction How did you get involved in the area of data management? Can you describe what you are building at Voltron Data and the story behind it? What is the vision for the broader data ecosystem that you are trying to realize through your investment in Arrow and related projects? How does your work at Voltron Data contribute to the realization of that vision? What is the impact on engineer productivity and compute efficiency that gets introduced by the impedance mismatches between language and framework representations of data? The scope and capabilities of the Arrow project have grown substantially since it was first introduced. Can you give an overview of the current features and extensions to the project? What are some of the ways that ArrowVe and its related projects can be integrated with or replace the different elements of a data platform? Can you describe how Arrow is implemented? What are the most complex/challenging aspects of the engineering needed to support interoperable data interchange between language runtimes? How are you balancing the desire to move quickly and improve the Arrow protocol and implementations, with the need to wait for other players in the ecosystem (e.g. database engines, compute frameworks, etc.) to add support? With the growing application of data formats such as graphs and vectors, what do you see as the role of Arrow and its ideas in those use cases? For workflows that rely on integrating structured and unstructured data, what are the options for interaction with non-tabular data? (e.g. images, documents, etc.) With your support-focused business model, how are you approaching marketing and customer education to make it viable and scalable? What are the most interesting, innovative, or unexpected ways that you have seen Arrow used? What are the most interesting, unexpected, or challenging lessons that you have learned while working on Arrow and its ecosystem? When is Arrow the wrong choice? What do you have planned for the future of Arrow? Contact Info Website wesm on GitHub @wesmckinn on Twitter Parting Question From your perspective, what is the biggest gap in the tooling or technology for data management today? Closing Announcements Thank you for listening! Don’t forget to check out our other shows. Podcast.__init__ covers the Python language, its community, and the innovative ways it is being used. The Machine Learning Podcast helps you go from idea to production with machine learning. Visit the site to subscribe to the show, sign up for the mailing list, and read the show notes. If you’ve learned something or tried out a project from the show then tell us about it! Email hosts@dataengineeringpodcast.com) with your story. To help other people find the show please leave a review on Apple Podcasts and tell your friends and co-workers Links Voltron Data Pandas Podcast Episode Apache Arrow Partial Differential Equation FPGA == Field-Programmable Gate Array GPU == Graphics Processing Unit Ursa Labs Voltron (cartoon) Feature Engineering PySpark Substrait Arrow Flight Acero Arrow Datafusion Velox Ibis SIMD == Single Instruction, Multiple Data Lance DuckDB Podcast Episode Data Threads Conference Nano-Arrow Arrow ADBC Protocol Apache Iceberg Podcast Episode The intro and outro music is from The Hug by The Freak Fandango Orchestra / CC BY-SA1 comments1
- Analyze Massive Data At Interactive Speeds With The Power Of Bitmaps Using FeatureBaseSummary The most expensive part of working with massive data sets is the work of retrieving and processing the files that contain the raw information. FeatureBase (formerly Pilosa) avoids that overhead by converting the data into bitmaps. In this episode Matt Jaffee explains how to model your data as bitmaps and the benefits that this representation provides for fast aggregate computation. He also discusses the improvements that have been incorporated into FeatureBase to simplify integration with the rest of your data stack, and the SQL interface that was added to make working with the product easier. Announcements Hello and welcome to the Data Engineering Podcast, the show about modern data management When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With their new managed database service you can launch a production ready MySQL, Postgres, or MongoDB cluster in minutes, with automated backups, 40 Gbps connections from your application hosts, and high throughput SSDs. Go to dataengineeringpodcast.com/linode today and get a $100 credit to launch a database, create a Kubernetes cluster, or take advantage of all of their other services. And don’t forget to thank them for their continued support of this show! Modern data teams are dealing with a lot of complexity in their data pipelines and analytical code. Monitoring data quality, tracing incidents, and testing changes can be daunting and often takes hours to days or even weeks. By the time errors have made their way into production, it’s often too late and damage is done. Datafold built automated regression testing to help data and analytics engineers deal with data quality in their pull requests. Datafold shows how a change in SQL code affects your data, both on a statistical level and down to individual rows and values before it gets merged to production. No more shipping and praying, you can now know exactly what will change in your database! Datafold integrates with all major data warehouses as well as frameworks such as Airflow & dbt and seamlessly plugs into CI workflows. Visit dataengineeringpodcast.com/datafold today to book a demo with Datafold. RudderStack helps you build a customer data platform on your warehouse or data lake. Instead of trapping data in a black box, they enable you to easily collect customer data from the entire stack and build an identity graph on your warehouse, giving you full visibility and control. Their SDKs make event streaming from any app or website easy, and their extensive library of integrations enable you to automatically send data to hundreds of downstream tools. Sign up free at dataengineeringpodcast.com/rudder Build Data Pipelines. Not DAGs. That’s the spirit behind Upsolver SQLake, a new self-service data pipeline platform that lets you build batch and streaming pipelines without falling into the black hole of DAG-based orchestration. All you do is write a query in SQL to declare your transformation, and SQLake will turn it into a continuous pipeline that scales to petabytes and delivers up to the minute fresh data. SQLake supports a broad set of transformations, including high-cardinality joins, aggregations, upserts and window operations. Output data can be streamed into a data lake for query engines like Presto, Trino or Spark SQL, a data warehouse like Snowflake or Redshift., or any other destination you choose. Pricing for SQLake is simple. You pay $99 per terabyte ingested into your data lake using SQLake, and run unlimited transformation pipelines for free. That way data engineers and data users can process to their heart’s content without worrying about their cloud bill. For data engineering podcast listeners, we’re offering a 30 day trial with unlimited data, so go to dataengineeringpodcast.com/upsolver today and see for yourself how to avoid DAG hell. Your host is Tobias Macey and today I’m interviewing Matt Jaffee about FeatureBase (formerly known as Pilosa and Molecula), a real-time analytical database engine built on bitmaps Interview Introduction How did you get involved in the area of data management? Can you describe what FeatureBase is? What are the use cases that it is designed and optimized for? What are some applications or analyses that are uniquely suited to FeatureBase’s capabilities? What are the notable changes/evolutions that it has gone through in recent years? What are the forces in the broader data ecosystem that have had the greatest impact on your project/product focus? What are the data modeling concepts that platform and data engineers need to consider when working with FeatureBase? With bitmaps as the core data structure, what is involved in translating existing data into bitmaps? How does schema evolution translate to the data representation used in FeatureBase? How does the data model influence considerations around security policies and governance? What are the most interesting, innovative, or unexpected ways that you have seen FeatureBase used? What are the most interesting, unexpected, or challenging lessons that you have learned while working on FeatureBase? When is FeatureBase the wrong choice? What do you have planned for the future of FeatureBase? Contact Info LinkedIn jaffee on GitHub @mattjaffee on Twitter Parting Question From your perspective, what is the biggest gap in the tooling or technology for data management today? Closing Announcements Thank you for listening! Don’t forget to check out our other shows. Podcast.__init__ covers the Python language, its community, and the innovative ways it is being used. The Machine Learning Podcast helps you go from idea to production with machine learning. Visit the site to subscribe to the show, sign up for the mailing list, and read the show notes. If you’ve learned something or tried out a project from the show then tell us about it! Email hosts@dataengineeringpodcast.com) with your story. To help other people find the show please leave a review on Apple Podcasts and tell your friends and co-workers Links FeatureBase Pilosa Episode Molecula Episode Bitmap Roaring Bitmaps Pinecone Podcast Episode Milvus Podcast Episode The intro and outro music is from The Hug by The Freak Fandango Orchestra / CC BY-SA1 comments1
- A Look At The Data Systems Behind The Gameplay For League Of LegendsSummary The majority of blog posts and presentations about data engineering and analytics assume that the consumers of those efforts are internal business users accessing an environment controlled by the business. In this episode Ian Schweer shares his experiences at Riot Games supporting player-focused features such as machine learning models and recommeder systems that are deployed as part of the game binary. He explains the constraints that he and his team are faced with and the various challenges that they have overcome to build useful data products on top of a legacy platform where they don’t control the end-to-end systems. Announcements Hello and welcome to the Data Engineering Podcast, the show about modern data management When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With their new managed database service you can launch a production ready MySQL, Postgres, or MongoDB cluster in minutes, with automated backups, 40 Gbps connections from your application hosts, and high throughput SSDs. Go to dataengineeringpodcast.com/linode today and get a $100 credit to launch a database, create a Kubernetes cluster, or take advantage of all of their other services. And don’t forget to thank them for their continued support of this show! Atlan is the metadata hub for your data ecosystem. Instead of locking your metadata into a new silo, unleash its transformative potential with Atlan’s active metadata capabilities. Push information about data freshness and quality to your business intelligence, automatically scale up and down your warehouse based on usage patterns, and let the bots answer those questions in Slack so that the humans can focus on delivering real value. Go to dataengineeringpodcast.com/atlan today to learn more about how Atlan’s active metadata platform is helping pioneering data teams like Postman, Plaid, WeWork & Unilever achieve extraordinary things with metadata and escape the chaos. The biggest challenge with modern data systems is understanding what data you have, where it is located, and who is using it. Select Star’s data discovery platform solves that out of the box, with an automated catalog that includes lineage from where the data originated, all the way to which dashboards rely on it and who is viewing them every day. Just connect it to your database/data warehouse/data lakehouse/whatever you’re using and let them do the rest. Go to dataengineeringpodcast.com/selectstar today to double the length of your free trial and get a swag package when you convert to a paid plan. Data engineers don’t enjoy writing, maintaining, and modifying ETL pipelines all day, every day. Especially once they realize 90% of all major data sources like Google Analytics, Salesforce, Adwords, Facebook, Spreadsheets, etc., are already available as plug-and-play connectors with reliable, intuitive SaaS solutions. Hevo Data is a highly reliable and intuitive data pipeline platform used by data engineers from 40+ countries to set up and run low-latency ELT pipelines with zero maintenance. Boasting more than 150 out-of-the-box connectors that can be set up in minutes, Hevo also allows you to monitor and control your pipelines. You get: real-time data flow visibility, fail-safe mechanisms, and alerts if anything breaks; preload transformations and auto-schema mapping precisely control how data lands in your destination; models and workflows to transform data for analytics; and reverse-ETL capability to move the transformed data back to your business software to inspire timely action. All of this, plus its transparent pricing and 24*7 live support, makes it consistently voted by users as the Leader in the Data Pipeline category on review platforms like G2. Go to dataengineeringpodcast.com/hevodata and sign up for a free 14-day trial that also comes with 24×7 support. Your host is Tobias Macey and today I’m interviewing Ian Schweer about building the data systems that power League of Legends Interview Introduction How did you get involved in the area of data management? Can you describe what League of Legends is and the role that data plays in the experience? What are the characteristics of the data that you are working with? (e.g. volume/variety/velocity, structured vs. unstructured, real-time vs. batch, etc.) What are the biggest data-related challenges that you face (technically or organizationally)? Multiplayer games are very sensitive to latency. How does that influence your approach to instrumentation/data collection in the end-user experience? Can you describe the current architecture of your data platform? What are the notable evolutions that it has gone through over the life of the game/product? What are the capabilities that you are optimizing for in your platform architecture? Given the longevity of the League of Legends product, what are the practices and design elements that you rely on to help onboard new team members? What are the seams that you intentionally build in to allow for evolution of components and use cases? What are the most interesting, innovative, or unexpected ways that you have seen data and its derivatives used by Riot Games or your players? What are the most interesting, unexpected, or challenging lessons that you have learned while working on the data stack for League of Legends? What are the most interesting or informative mistakes that you have made (personally or as a team)? What do you have planned for the future of the data stack at Riot Games? Contact Info LinkedIn Github Parting Question From your perspective, what is the biggest gap in the tooling or technology for data management today? Closing Announcements Thank you for listening! Don’t forget to check out our other shows. Podcast.__init__ covers the Python language, its community, and the innovative ways it is being used. The Machine Learning Podcast helps you go from idea to production with machine learning. Visit the site to subscribe to the show, sign up for the mailing list, and read the show notes. If you’ve learned something or tried out a project from the show then tell us about it! Email hosts@dataengineeringpodcast.com) with your story. To help other people find the show please leave a review on Apple Podcasts and tell your friends and co-workers Links Riot Games League of Legends Team Fight Tactics Wild Rift DoorDash Podcast Interview Decision Science Kafka Alation Airflow Spark Monte Carlo Podcast Episode libtorch The intro and outro music is from The Hug by The Freak Fandango Orchestra / CC BY-SA1 comments1
- Tame The Entropy In Your Data Stack And Prevent Failures With SiffletSummary The problems that are easiest to fix are the ones that you prevent from happening in the first place. Sifflet is a platform that brings your entire data stack into focus to improve the reliability of your data assets and empower collaboration across your teams. In this episode CEO and founder Salma Bakouk shares her views on the causes and impacts of "data entropy" and how you can tame it before it leads to failures. Announcements Hello and welcome to the Data Engineering Podcast, the show about modern data management When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With their new managed database service you can launch a production ready MySQL, Postgres, or MongoDB cluster in minutes, with automated backups, 40 Gbps connections from your application hosts, and high throughput SSDs. Go to dataengineeringpodcast.com/linode today and get a $100 credit to launch a database, create a Kubernetes cluster, or take advantage of all of their other services. And don’t forget to thank them for their continued support of this show! Modern data teams are dealing with a lot of complexity in their data pipelines and analytical code. Monitoring data quality, tracing incidents, and testing changes can be daunting and often takes hours to days or even weeks. By the time errors have made their way into production, it’s often too late and damage is done. Datafold built automated regression testing to help data and analytics engineers deal with data quality in their pull requests. Datafold shows how a change in SQL code affects your data, both on a statistical level and down to individual rows and values before it gets merged to production. No more shipping and praying, you can now know exactly what will change in your database! Datafold integrates with all major data warehouses as well as frameworks such as Airflow & dbt and seamlessly plugs into CI workflows. Visit dataengineeringpodcast.com/datafold today to book a demo with Datafold. RudderStack helps you build a customer data platform on your warehouse or data lake. Instead of trapping data in a black box, they enable you to easily collect customer data from the entire stack and build an identity graph on your warehouse, giving you full visibility and control. Their SDKs make event streaming from any app or website easy, and their extensive library of integrations enable you to automatically send data to hundreds of downstream tools. Sign up free at dataengineeringpodcast.com/rudder Data teams are increasingly under pressure to deliver. According to a recent survey by Ascend.io, 95% in fact reported being at or over capacity. With 72% of data experts reporting demands on their team going up faster than they can hire, it’s no surprise they are increasingly turning to automation. In fact, while only 3.5% report having current investments in automation, 85% of data teams plan on investing in automation in the next 12 months. 85%!!! That’s where our friends at Ascend.io come in. The Ascend Data Automation Cloud provides a unified platform for data ingestion, transformation, orchestration, and observability. Ascend users love its declarative pipelines, powerful SDK, elegant UI, and extensible plug-in architecture, as well as its support for Python, SQL, Scala, and Java. Ascend automates workloads on Snowflake, Databricks, BigQuery, and open source Spark, and can be deployed in AWS, Azure, or GCP. Go to dataengineeringpodcast.com/ascend and sign up for a free trial. If you’re a data engineering podcast listener, you get credits worth $5,000 when you become a customer. Your host is Tobias Macey and today I’m interviewing Salma Bakouk about achieving data reliability and reducing entropy within your data stack with sifflet Interview Introduction How did you get involved in the area of data management? Can you describe what Sifflet is and the story behind it? What is the motivating goal for the company and product? What are the categories of errors that you consider to be preventable? How does the visibility provided by Sifflet contribute to those prevention efforts? What are the UI/UX patterns that you rely on to allow for meaningful exploration and analysis of dependency chains/impact assessments in the lineage graph? Can you describe how you’ve implemented Sifflet? How have the scope and focus of the product evolved from when you first launched? What is the workflow for someone getting Sifflet integrated into their data stack? What are some of the data modeling considerations that need to be considered when pushing metadata to Sifflet? What are the most interesting, innovative, or unexpected ways that you have seen Sifflet used? What are the most interesting, unexpected, or challenging lessons that you have learned while working on Sifflet? When is Sifflet the wrong choice? What do you have planned for the future of Sifflet? Contact Info LinkedIn @SalmaBakouk on Twitter Parting Question From your perspective, what is the biggest gap in the tooling or technology for data management today? Closing Announcements Thank you for listening! Don’t forget to check out our other shows. Podcast.__init__ covers the Python language, its community, and the innovative ways it is being used. The Machine Learning Podcast helps you go from idea to production with machine learning. Visit the site to subscribe to the show, sign up for the mailing list, and read the show notes. If you’ve learned something or tried out a project from the show then tell us about it! Email hosts@dataengineeringpodcast.com) with your story. To help other people find the show please leave a review on Apple Podcasts and tell your friends and co-workers Links Sifflet Data Observability DataDog NewRelic Splunk Modern Data Stack GoCardless Airbyte Fivetran ORM == Object Relational Mapping The intro and outro music is from The Hug by The Freak Fandango Orchestra / CC BY-SA1 comments1
- Build Data Products Without A Data Team Using AgileDataSummary Building data products is an undertaking that has historically required substantial investments of time and talent. With the rise in cloud platforms and self-serve data technologies the barrier of entry is dropping. Shane Gibson co-founded AgileData to make analytics accessible to companies of all sizes. In this episode he explains the design of the platform and how it builds on agile development principles to help you focus on delivering value. Announcements Hello and welcome to the Data Engineering Podcast, the show about modern data management When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With their new managed database service you can launch a production ready MySQL, Postgres, or MongoDB cluster in minutes, with automated backups, 40 Gbps connections from your application hosts, and high throughput SSDs. Go to dataengineeringpodcast.com/linode today and get a $100 credit to launch a database, create a Kubernetes cluster, or take advantage of all of their other services. And don’t forget to thank them for their continued support of this show! Atlan is the metadata hub for your data ecosystem. Instead of locking your metadata into a new silo, unleash its transformative potential with Atlan’s active metadata capabilities. Push information about data freshness and quality to your business intelligence, automatically scale up and down your warehouse based on usage patterns, and let the bots answer those questions in Slack so that the humans can focus on delivering real value. Go to dataengineeringpodcast.com/atlan today to learn more about how Atlan’s active metadata platform is helping pioneering data teams like Postman, Plaid, WeWork & Unilever achieve extraordinary things with metadata and escape the chaos. Prefect is the modern Dataflow Automation platform for the modern data stack, empowering data practitioners to build, run and monitor robust pipelines at scale. Guided by the principle that the orchestrator shouldn’t get in your way, Prefect is the only tool of its kind to offer the flexibility to write code as workflows. Prefect specializes in glueing together the disparate pieces of a pipeline, and integrating with modern distributed compute libraries to bring power where you need it, when you need it. Trusted by thousands of organizations and supported by over 20,000 community members, Prefect powers over 100MM business critical tasks a month. For more information on Prefect, visit dataengineeringpodcast.com/prefect. Data engineers don’t enjoy writing, maintaining, and modifying ETL pipelines all day, every day. Especially once they realize 90% of all major data sources like Google Analytics, Salesforce, Adwords, Facebook, Spreadsheets, etc., are already available as plug-and-play connectors with reliable, intuitive SaaS solutions. Hevo Data is a highly reliable and intuitive data pipeline platform used by data engineers from 40+ countries to set up and run low-latency ELT pipelines with zero maintenance. Boasting more than 150 out-of-the-box connectors that can be set up in minutes, Hevo also allows you to monitor and control your pipelines. You get: real-time data flow visibility, fail-safe mechanisms, and alerts if anything breaks; preload transformations and auto-schema mapping precisely control how data lands in your destination; models and workflows to transform data for analytics; and reverse-ETL capability to move the transformed data back to your business software to inspire timely action. All of this, plus its transparent pricing and 24*7 live support, makes it consistently voted by users as the Leader in the Data Pipeline category on review platforms like G2. Go to dataengineeringpodcast.com/hevodata and sign up for a free 14-day trial that also comes with 24×7 support. Your host is Tobias Macey and today I’m interviewing Shane Gibson about AgileData, a platform that lets you build data products without all of the overhead of managing a data team Interview Introduction How did you get involved in the area of data management? Can you describe what AgileData is and the story behind it? Who is the target audience for this product? For organizations that have an existing data team, how does the platform augment/simplify their work? Can you describe how the AgileData platform is implemented? What are some of the notable evolutions that it has gone through since you first started working on it? Given your strong focus on Agile methods in your work, how has that influenced your priorities in developing the platform? What are the most interesting, innovative, or unexpected ways that you have seen AgileData used? What are the most interesting, unexpected, or challenging lessons that you have learned while working on AgileData? When is AgileData the wrong choice? What do you have planned for the future of AgileData? Contact Info LinkedIn @shagility on Twitter Parting Question From your perspective, what is the biggest gap in the tooling or technology for data management today? Closing Announcements Thank you for listening! Don’t forget to check out our other shows. Podcast.__init__ covers the Python language, its community, and the innovative ways it is being used. The Machine Learning Podcast helps you go from idea to production with machine learning. Visit the site to subscribe to the show, sign up for the mailing list, and read the show notes. If you’ve learned something or tried out a project from the show then tell us about it! Email hosts@dataengineeringpodcast.com) with your story. To help other people find the show please leave a review on Apple Podcasts and tell your friends and co-workers Links AgileData Agile Practices For Data Interview Microsoft Azure Snowflake BigQuery DuckDB Podcast Episode Google BI Engine OLAP The intro and outro music is from The Hug by The Freak Fandango Orchestra / CC BY-SA1 comments1
- Taking A Look Under The Hood At CreditKarma's Data PlatformSummary CreditKarma builds data products that help consumers take advantage of their credit and financial capabilities. To make that possible they need a reliable data platform that empowers all of the organization’s stakeholders. In this episode Vishnu Venkataraman shares the journey that he and his team have taken to build and evolve their systems and improve the product offerings that they are able to support. Announcements Hello and welcome to the Data Engineering Podcast, the show about modern data management When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With their new managed database service you can launch a production ready MySQL, Postgres, or MongoDB cluster in minutes, with automated backups, 40 Gbps connections from your application hosts, and high throughput SSDs. Go to dataengineeringpodcast.com/linode today and get a $100 credit to launch a database, create a Kubernetes cluster, or take advantage of all of their other services. And don’t forget to thank them for their continued support of this show! Modern data teams are dealing with a lot of complexity in their data pipelines and analytical code. Monitoring data quality, tracing incidents, and testing changes can be daunting and often takes hours to days or even weeks. By the time errors have made their way into production, it’s often too late and damage is done. Datafold built automated regression testing to help data and analytics engineers deal with data quality in their pull requests. Datafold shows how a change in SQL code affects your data, both on a statistical level and down to individual rows and values before it gets merged to production. No more shipping and praying, you can now know exactly what will change in your database! Datafold integrates with all major data warehouses as well as frameworks such as Airflow & dbt and seamlessly plugs into CI workflows. Visit dataengineeringpodcast.com/datafold today to book a demo with Datafold. RudderStack helps you build a customer data platform on your warehouse or data lake. Instead of trapping data in a black box, they enable you to easily collect customer data from the entire stack and build an identity graph on your warehouse, giving you full visibility and control. Their SDKs make event streaming from any app or website easy, and their extensive library of integrations enable you to automatically send data to hundreds of downstream tools. Sign up free at dataengineeringpodcast.com/rudder Data teams are increasingly under pressure to deliver. According to a recent survey by Ascend.io, 95% in fact reported being at or over capacity. With 72% of data experts reporting demands on their team going up faster than they can hire, it’s no surprise they are increasingly turning to automation. In fact, while only 3.5% report having current investments in automation, 85% of data teams plan on investing in automation in the next 12 months. 85%!!! That’s where our friends at Ascend.io come in. The Ascend Data Automation Cloud provides a unified platform for data ingestion, transformation, orchestration, and observability. Ascend users love its declarative pipelines, powerful SDK, elegant UI, and extensible plug-in architecture, as well as its support for Python, SQL, Scala, and Java. Ascend automates workloads on Snowflake, Databricks, BigQuery, and open source Spark, and can be deployed in AWS, Azure, or GCP. Go to dataengineeringpodcast.com/ascend and sign up for a free trial. If you’re a data engineering podcast listener, you get credits worth $5,000 when you become a customer. Your host is Tobias Macey and today I’m interviewing Vishnu Venkataraman about building the data platform at CreditKarma and the forces that shaped the design Interview Introduction How did you get involved in the area of data management? Can you describe what CreditKarma is and the role of data in the business? What is the current team topology that you are using to support data needs in the organization? How has that evolved from when you first started with the company? What are some of the characteristics of the data that you work with? (e.g. volume/variety/velocity, source of the data, format of the data) What are the aspects of data management and architecture that have posed the greatest challenge? What are the data applications that are providing the greatest ROI and/or seeing the most usage? How have you approached the design and growth of your data platform? CreditKarma was one of the first FinTech companies to migrate to the cloud, specifically GCP. Why migrate? What were some of your early challenges taking the company to the cloud? What are the main components of your data platform? What are the most notable evolutions that it has gone through? Given your strong focus on applications of data science and ML, how has that influenced the architectural foundations of your data capabilities? What is your process for evaluating build vs. buy decisions? What are your triggers for deciding when to re-evaluate components of your platform? Given your work with financial institutions how do you address testing and validation of your derived data? How does your team solve for data reliability and quality more broadly? What are the most interesting, innovative, or unexpected aspects of your growth as a data-led organization? What are the most interesting, unexpected, or challenging lessons that you have learned while building up your data platform and teams? When are the most informative mistakes that you have made? What do you have planned for the future of your data platform? Contact Info LinkedIn @vishnuvram on Twitter Parting Question From your perspective, what is the biggest gap in the tooling or technology for data management today? Closing Announcements Thank you for listening! Don’t forget to check out our other shows. Podcast.__init__ covers the Python language, its community, and the innovative ways it is being used. The Machine Learning Podcast helps you go from idea to production with machine learning. Visit the site to subscribe to the show, sign up for the mailing list, and read the show notes. If you’ve learned something or tried out a project from the show then tell us about it! Email hosts@dataengineeringpodcast.com) with your story. To help other people find the show please leave a review on Apple Podcasts and tell your friends and co-workers Links CreditKarma Games 24×7 Vertica BigQuery Google Cloud Dataflow Anodot The intro and outro music is from The Hug by The Freak Fandango Orchestra / CC BY-SA1 comments1
- Build Better Data Products By Creating Data, Not Consuming ItSummary A lot of the work that goes into data engineering is trying to make sense of the "data exhaust" from other applications and services. There is an undeniable amount of value and utility in that information, but it also introduces significant cost and time requirements. In this episode Nick King discusses how you can be intentional about data creation in your applications and services to reduce the friction and errors involved in building data products and ML applications. He also describes the considerations involved in bringing behavioral data into your systems, and the ways that he and the rest of the Snowplow team are working to make that an easy addition to your platforms. Announcements Hello and welcome to the Data Engineering Podcast, the show about modern data management When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With their new managed database service you can launch a production ready MySQL, Postgres, or MongoDB cluster in minutes, with automated backups, 40 Gbps connections from your application hosts, and high throughput SSDs. Go to dataengineeringpodcast.com/linode today and get a $100 credit to launch a database, create a Kubernetes cluster, or take advantage of all of their other services. And don’t forget to thank them for their continued support of this show! Atlan is the metadata hub for your data ecosystem. Instead of locking your metadata into a new silo, unleash its transformative potential with Atlan’s active metadata capabilities. Push information about data freshness and quality to your business intelligence, automatically scale up and down your warehouse based on usage patterns, and let the bots answer those questions in Slack so that the humans can focus on delivering real value. Go to dataengineeringpodcast.com/atlan today to learn more about how Atlan’s active metadata platform is helping pioneering data teams like Postman, Plaid, WeWork & Unilever achieve extraordinary things with metadata and escape the chaos. Prefect is the modern Dataflow Automation platform for the modern data stack, empowering data practitioners to build, run and monitor robust pipelines at scale. Guided by the principle that the orchestrator shouldn’t get in your way, Prefect is the only tool of its kind to offer the flexibility to write code as workflows. Prefect specializes in glueing together the disparate pieces of a pipeline, and integrating with modern distributed compute libraries to bring power where you need it, when you need it. Trusted by thousands of organizations and supported by over 20,000 community members, Prefect powers over 100MM business critical tasks a month. For more information on Prefect, visit dataengineeringpodcast.com/prefect. Data engineers don’t enjoy writing, maintaining, and modifying ETL pipelines all day, every day. Especially once they realize 90% of all major data sources like Google Analytics, Salesforce, Adwords, Facebook, Spreadsheets, etc., are already available as plug-and-play connectors with reliable, intuitive SaaS solutions. Hevo Data is a highly reliable and intuitive data pipeline platform used by data engineers from 40+ countries to set up and run low-latency ELT pipelines with zero maintenance. Boasting more than 150 out-of-the-box connectors that can be set up in minutes, Hevo also allows you to monitor and control your pipelines. You get: real-time data flow visibility, fail-safe mechanisms, and alerts if anything breaks; preload transformations and auto-schema mapping precisely control how data lands in your destination; models and workflows to transform data for analytics; and reverse-ETL capability to move the transformed data back to your business software to inspire timely action. All of this, plus its transparent pricing and 24*7 live support, makes it consistently voted by users as the Leader in the Data Pipeline category on review platforms like G2. Go to dataengineeringpodcast.com/hevodata and sign up for a free 14-day trial that also comes with 24×7 support. Your host is Tobias Macey and today I’m interviewing Nick King about the utility of behavioral data for your data products and the technical and strategic considerations to collect and integrate it Interview Introduction How did you get involved in the area of data management? Can you share your definition of "behavioral data" and how it is differentiated from other sources/types of data? What are some of the unique characteristics of that information? What technical systems are required to generate and collect those interactions? What are the organizational patterns that are required to support effective workflows for building data generation capabilities? What are some of the strategies that have been most effective for bringing together data and application teams to identify and implement what behaviors to track? What are some of the ethical and privacy considerations that need to be addressed when working with end-user behavioral data? The data sources associated with business operations services and custom applications already represent some measure of user interaction and behaviors. How can teams use the information available from those systems to inform and augment the types of events/information that should be captured/generated in a system like Snowplow? Can you describe the workflow for a team using Snowplow to generate data for a given analytical/ML project? What are some of the tactical aspects of deciding what interfaces to use for generating interaction events? What are some of the event modeling strategies to keep in mind to simplify the analysis and integration of the generated data? What are some of the notable changes in implementation and focus for Snowplow over the past ~4 years? How has the emergence of the "modern data stack" influenced the product direction? What are the most interesting, innovative, or unexpected ways that you have seen Snowplow used for data generation/behavioral data collection? What are the most interesting, unexpected, or challenging lessons that you have learned while working on Snowplow? When is Snowplow the wrong choice? What do you have planned for the future of Snowplow? Contact Info LinkedIn @nking on Twitter Parting Question From your perspective, what is the biggest gap in the tooling or technology for data management today? Closing Announcements Thank you for listening! Don’t forget to check out our other shows. Podcast.__init__ covers the Python language, its community, and the innovative ways it is being used. The Machine Learning Podcast helps you go from idea to production with machine learning. Visit the site to subscribe to the show, sign up for the mailing list, and read the show notes. If you’ve learned something or tried out a project from the show then tell us about it! Email hosts@dataengineeringpodcast.com) with your story. To help other people find the show please leave a review on Apple Podcasts and tell your friends and co-workers Links Snowplow Podcast Episode Private SaaS Episode AS/400 DB2 BigQuery Azure SQL Data Robot Google Spanner MRE == Meals Ready to Eat The intro and outro music is from The Hug by The Freak Fandango Orchestra / CC BY-SA1 comments1
- Clean Up Your Data Using Scalable Entity Resolution And Data Mastering With ZinggSummary Despite the best efforts of data engineers, data is as messy as the real world. Entity resolution and fuzzy matching are powerful utilities for cleaning up data from disconnected sources, but it has typically required custom development and training machine learning models. Sonal Goyal created and open-sourced Zingg as a generalized tool for data mastering and entity resolution to reduce the effort involved in adopting those practices. In this episode she shares the story behind the project, the details of how it is implemented, and how you can use it for your own data projects. Announcements Hello and welcome to the Data Engineering Podcast, the show about modern data management When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With their new managed database service you can launch a production ready MySQL, Postgres, or MongoDB cluster in minutes, with automated backups, 40 Gbps connections from your application hosts, and high throughput SSDs. Go to dataengineeringpodcast.com/linode today and get a $100 credit to launch a database, create a Kubernetes cluster, or take advantage of all of their other services. And don’t forget to thank them for their continued support of this show! RudderStack helps you build a customer data platform on your warehouse or data lake. Instead of trapping data in a black box, they enable you to easily collect customer data from the entire stack and build an identity graph on your warehouse, giving you full visibility and control. Their SDKs make event streaming from any app or website easy, and their extensive library of integrations enable you to automatically send data to hundreds of downstream tools. Sign up free at dataengineeringpodcast.com/rudder Modern data teams are dealing with a lot of complexity in their data pipelines and analytical code. Monitoring data quality, tracing incidents, and testing changes can be daunting and often takes hours to days or even weeks. By the time errors have made their way into production, it’s often too late and damage is done. Datafold built automated regression testing to help data and analytics engineers deal with data quality in their pull requests. Datafold shows how a change in SQL code affects your data, both on a statistical level and down to individual rows and values before it gets merged to production. No more shipping and praying, you can now know exactly what will change in your database! Datafold integrates with all major data warehouses as well as frameworks such as Airflow & dbt and seamlessly plugs into CI workflows. Visit dataengineeringpodcast.com/datafold today to book a demo with Datafold. Data teams are increasingly under pressure to deliver. According to a recent survey by Ascend.io, 95% in fact reported being at or over capacity. With 72% of data experts reporting demands on their team going up faster than they can hire, it’s no surprise they are increasingly turning to automation. In fact, while only 3.5% report having current investments in automation, 85% of data teams plan on investing in automation in the next 12 months. 85%!!! That’s where our friends at Ascend.io come in. The Ascend Data Automation Cloud provides a unified platform for data ingestion, transformation, orchestration, and observability. Ascend users love its declarative pipelines, powerful SDK, elegant UI, and extensible plug-in architecture, as well as its support for Python, SQL, Scala, and Java. Ascend automates workloads on Snowflake, Databricks, BigQuery, and open source Spark, and can be deployed in AWS, Azure, or GCP. Go to dataengineeringpodcast.com/ascend and sign up for a free trial. If you’re a data engineering podcast listener, you get credits worth $5,000 when you become a customer. Your host is Tobias Macey and today I’m interviewing Sonal Goyal about Zingg, an open source entity resolution framework for data engineers Interview Introduction How did you get involved in the area of data management? Can you describe what Zingg is and the story behind it? Who is the target audience for Zingg? How has that informed your efforts in the development and release of the project? What are the use cases where entity resolution is helpful or necessary in a data engineering context? What are the range of options that are available for teams to implement entity/identity resolution in their data? What was your motivation for creating an open source solution for this use case? Why do you think there has not been a compelling open source and generalized solution previously? Can you describe how Zingg is implemented? How have the design and goals shifted since you started working on the project? What does the installation and integration process look like for Zingg? Once you have Zingg configured, what is the workflow for a data engineer or analyst? What are the extension/customization options for someone using Zingg in their environment? What are the most interesting, innovative, or unexpected ways that you have seen Zingg used? What are the most interesting, unexpected, or challenging lessons that you have learned while working on Zingg? When is Zingg the wrong choice? What do you have planned for the future of Zingg? Contact Info LinkedIn @sonalgoyal on Twitter sonalgoyal on GitHub Parting Question From your perspective, what is the biggest gap in the tooling or technology for data management today? Closing Announcements Thank you for listening! Don’t forget to check out our other shows. Podcast.__init__ covers the Python language, its community, and the innovative ways it is being used. The Machine Learning Podcast helps you go from idea to production with machine learning. Visit the site to subscribe to the show, sign up for the mailing list, and read the show notes. If you’ve learned something or tried out a project from the show then tell us about it! Email hosts@dataengineeringpodcast.com) with your story. To help other people find the show please leave a review on Apple Podcasts and tell your friends and co-workers Links Zingg Entity Resolution MDM == Master Data Management Podcast Episode Snowflake Podcast Episode Snowpark Spark Milvus Podcast Episode Pinecone Podcast Episode DuckDB Podcast Episode The intro and outro music is from The Hug by The Freak Fandango Orchestra / CC BY-SA0 comments0
- Expanding The Reach of Business Intelligence Through Ubiquitous Embedded Analytics With SisenseSummary Business intelligence has grown beyond its initial manifestation as dashboards and reports. In its current incarnation it has become a ubiquitous need for analytics and opportunities to answer questions with data. In this episode Amir Orad discusses the Sisense platform and how it facilitates the embedding of analytics and data insights in every aspect of organizational and end-user experiences. Announcements Hello and welcome to the Data Engineering Podcast, the show about modern data management When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With their new managed database service you can launch a production ready MySQL, Postgres, or MongoDB cluster in minutes, with automated backups, 40 Gbps connections from your application hosts, and high throughput SSDs. Go to dataengineeringpodcast.com/linode today and get a $100 credit to launch a database, create a Kubernetes cluster, or take advantage of all of their other services. And don’t forget to thank them for their continued support of this show! Atlan is the metadata hub for your data ecosystem. Instead of locking your metadata into a new silo, unleash its transformative potential with Atlan’s active metadata capabilities. Push information about data freshness and quality to your business intelligence, automatically scale up and down your warehouse based on usage patterns, and let the bots answer those questions in Slack so that the humans can focus on delivering real value. Go to dataengineeringpodcast.com/atlan today to learn more about how Atlan’s active metadata platform is helping pioneering data teams like Postman, Plaid, WeWork & Unilever achieve extraordinary things with metadata and escape the chaos. Prefect is the modern Dataflow Automation platform for the modern data stack, empowering data practitioners to build, run and monitor robust pipelines at scale. Guided by the principle that the orchestrator shouldn’t get in your way, Prefect is the only tool of its kind to offer the flexibility to write code as workflows. Prefect specializes in glueing together the disparate pieces of a pipeline, and integrating with modern distributed compute libraries to bring power where you need it, when you need it. Trusted by thousands of organizations and supported by over 20,000 community members, Prefect powers over 100MM business critical tasks a month. For more information on Prefect, visit dataengineeringpodcast.com/prefect. Data engineers don’t enjoy writing, maintaining, and modifying ETL pipelines all day, every day. Especially once they realize 90% of all major data sources like Google Analytics, Salesforce, Adwords, Facebook, Spreadsheets, etc., are already available as plug-and-play connectors with reliable, intuitive SaaS solutions. Hevo Data is a highly reliable and intuitive data pipeline platform used by data engineers from 40+ countries to set up and run low-latency ELT pipelines with zero maintenance. Boasting more than 150 out-of-the-box connectors that can be set up in minutes, Hevo also allows you to monitor and control your pipelines. You get: real-time data flow visibility, fail-safe mechanisms, and alerts if anything breaks; preload transformations and auto-schema mapping precisely control how data lands in your destination; models and workflows to transform data for analytics; and reverse-ETL capability to move the transformed data back to your business software to inspire timely action. All of this, plus its transparent pricing and 24*7 live support, makes it consistently voted by users as the Leader in the Data Pipeline category on review platforms like G2. Go to dataengineeringpodcast.com/hevodata and sign up for a free 14-day trial that also comes with 24×7 support. Your host is Tobias Macey and today I’m interviewing Amir Orad about Sisense, a platform focused on providing intelligent analytics everywhere Interview Introduction How did you get involved in the area of data management? Can you describe what Sisense is and the story behind it? What are the use cases and customers that you are focused on supporting? What is your view on the role of business intelligence in a data driven organization? How has the market shifted in recent years and what are the motivating factors for those changes? Many conversations around data and analytics are focused on self-service access. what are the capabilities that are required to make that a reality? What are the core challenges that teams face on their path to designing and implementing a solution that is comprehensible by their stakeholders? What is the role of automation vs. low-/no-code? What are the unique capabilities that Sisense offers compared to other BI or embedded analytics services? Can you describe how the Sisense platform is implemented? How have the design and goals changed since you started working on it? What is the workflow for someone working with Sisense? What are the options for integrating Sisense with an organization’s data platform? What are the most interesting, innovative, or unexpected ways that you have seen Sisense used? What are the most interesting, unexpected, or challenging lessons that you have learned while working on Sisense? When is Sisense the wrong choice? What do you have planned for the future of Sisense? Contact Info LinkedIn @AmirOrad on Twitter Parting Question From your perspective, what is the biggest gap in the tooling or technology for data management today? Closing Announcements Thank you for listening! Don’t forget to check out our other shows. Podcast.__init__ covers the Python language, its community, and the innovative ways it is being used. The Machine Learning Podcast helps you go from idea to production with machine learning. Visit the site to subscribe to the show, sign up for the mailing list, and read the show notes. If you’ve learned something or tried out a project from the show then tell us about it! Email hosts@dataengineeringpodcast.com) with your story. To help other people find the show please leave a review on Apple Podcasts and tell your friends and co-workers Links Sisense Looker Podcast Episode PowerBI Podcast Episode Business Intelligence Snowflake The intro and outro music is from The Hug by The Freak Fandango Orchestra / CC BY-SA0 comments0
- Analytics Engineering Without The Friction Of Complex Pipeline Development With Optimus and dbtSummary One of the most impactful technologies for data analytics in recent years has been dbt. It’s hard to have a conversation about data engineering or analysis without mentioning it. Despite its widespread adoption there are still rough edges in its workflow that cause friction for data analysts. To help simplify the adoption and management of dbt projects Nandam Karthik helped create Optimus. In this episode he shares his experiences working with organizations to adopt analytics engineering patterns and the ways that Optimus and dbt were combined to let data analysts deliver insights without the roadblocks of complex pipeline management. Announcements Hello and welcome to the Data Engineering Podcast, the show about modern data management When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With their new managed database service you can launch a production ready MySQL, Postgres, or MongoDB cluster in minutes, with automated backups, 40 Gbps connections from your application hosts, and high throughput SSDs. Go to dataengineeringpodcast.com/linode today and get a $100 credit to launch a database, create a Kubernetes cluster, or take advantage of all of their other services. And don’t forget to thank them for their continued support of this show! Modern data teams are dealing with a lot of complexity in their data pipelines and analytical code. Monitoring data quality, tracing incidents, and testing changes can be daunting and often takes hours to days or even weeks. By the time errors have made their way into production, it’s often too late and damage is done. Datafold built automated regression testing to help data and analytics engineers deal with data quality in their pull requests. Datafold shows how a change in SQL code affects your data, both on a statistical level and down to individual rows and values before it gets merged to production. No more shipping and praying, you can now know exactly what will change in your database! Datafold integrates with all major data warehouses as well as frameworks such as Airflow & dbt and seamlessly plugs into CI workflows. Visit dataengineeringpodcast.com/datafold today to book a demo with Datafold. RudderStack helps you build a customer data platform on your warehouse or data lake. Instead of trapping data in a black box, they enable you to easily collect customer data from the entire stack and build an identity graph on your warehouse, giving you full visibility and control. Their SDKs make event streaming from any app or website easy, and their extensive library of integrations enable you to automatically send data to hundreds of downstream tools. Sign up free at dataengineeringpodcast.com/rudder Data teams are increasingly under pressure to deliver. According to a recent survey by Ascend.io, 95% in fact reported being at or over capacity. With 72% of data experts reporting demands on their team going up faster than they can hire, it’s no surprise they are increasingly turning to automation. In fact, while only 3.5% report having current investments in automation, 85% of data teams plan on investing in automation in the next 12 months. 85%!!! That’s where our friends at Ascend.io come in. The Ascend Data Automation Cloud provides a unified platform for data ingestion, transformation, orchestration, and observability. Ascend users love its declarative pipelines, powerful SDK, elegant UI, and extensible plug-in architecture, as well as its support for Python, SQL, Scala, and Java. Ascend automates workloads on Snowflake, Databricks, BigQuery, and open source Spark, and can be deployed in AWS, Azure, or GCP. Go to dataengineeringpodcast.com/ascend and sign up for a free trial. If you’re a data engineering podcast listener, you get credits worth $5,000 when you become a customer. Your host is Tobias Macey and today I’m interviewing Nandam Karthik about his experiences building analytics projects with dbt and Optimus for his clients at Sigmoid. Interview Introduction How did you get involved in the area of data management? Can you describe what Sigmoid is and the types of projects that you are involved in? What are some of the core challenges that your clients are facing when they start working with you? An ELT workflow with dbt as the transformation utility has become a popular pattern for building analytics systems. Can you share some examples of projects that you have built with this approach? What are some of the ways that this pattern becomes bespoke as you start exploring a project more deeply? What are the sharp edges/white spaces that you encountered across those projects? Can you describe what Optimus is? How does Optimus improve the user experience of teams working in dbt? What are some of the tactical/organizational practices that you have found most helpful when building with dbt and Optimus? What are the most interesting, innovative, or unexpected ways that you have seen Optimus/dbt used? What are the most interesting, unexpected, or challenging lessons that you have learned while working on dbt/Optimus projects? When is Optimus/dbt the wrong choice? What are your predictions for how "best practices" for analytics projects will change/evolve in the near/medium term? Contact Info LinkedIn Parting Question From your perspective, what is the biggest gap in the tooling or technology for data management today? Closing Announcements Thank you for listening! Don’t forget to check out our other shows. Podcast.__init__ covers the Python language, its community, and the innovative ways it is being used. The Machine Learning Podcast helps you go from idea to production with machine learning. Visit the site to subscribe to the show, sign up for the mailing list, and read the show notes. If you’ve learned something or tried out a project from the show then tell us about it! Email hosts@dataengineeringpodcast.com) with your story. To help other people find the show please leave a review on Apple Podcasts and tell your friends and co-workers Links Sigmoid Optimus dbt Podcast Episode Airflow AWS Glue BigQuery The intro and outro music is from The Hug by The Freak Fandango Orchestra / CC BY-SA1 comments1
- How To Bring Agile Practices To Your Data ProjectsSummary Agile methodologies have been adopted by a majority of teams for building software applications. Applying those same practices to data can prove challenging due to the number of systems that need to be included to implement a complete feature. In this episode Shane Gibson shares practical advice and insights from his years of experience as a consultant and engineer working in data about how to adopt agile principles in your data work so that you can move faster and provide more value to the business, while building systems that are maintainable and adaptable. Announcements Hello and welcome to the Data Engineering Podcast, the show about modern data management When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With their new managed database service you can launch a production ready MySQL, Postgres, or MongoDB cluster in minutes, with automated backups, 40 Gbps connections from your application hosts, and high throughput SSDs. Go to dataengineeringpodcast.com/linode today and get a $100 credit to launch a database, create a Kubernetes cluster, or take advantage of all of their other services. And don’t forget to thank them for their continued support of this show! Atlan is the metadata hub for your data ecosystem. Instead of locking your metadata into a new silo, unleash its transformative potential with Atlan’s active metadata capabilities. Push information about data freshness and quality to your business intelligence, automatically scale up and down your warehouse based on usage patterns, and let the bots answer those questions in Slack so that the humans can focus on delivering real value. Go to dataengineeringpodcast.com/atlan today to learn more about how Atlan’s active metadata platform is helping pioneering data teams like Postman, Plaid, WeWork & Unilever achieve extraordinary things with metadata and escape the chaos. Prefect is the modern Dataflow Automation platform for the modern data stack, empowering data practitioners to build, run and monitor robust pipelines at scale. Guided by the principle that the orchestrator shouldn’t get in your way, Prefect is the only tool of its kind to offer the flexibility to write code as workflows. Prefect specializes in glueing together the disparate pieces of a pipeline, and integrating with modern distributed compute libraries to bring power where you need it, when you need it. Trusted by thousands of organizations and supported by over 20,000 community members, Prefect powers over 100MM business critical tasks a month. For more information on Prefect, visit dataengineeringpodcast.com/prefect. Data engineers don’t enjoy writing, maintaining, and modifying ETL pipelines all day, every day. Especially once they realize 90% of all major data sources like Google Analytics, Salesforce, Adwords, Facebook, Spreadsheets, etc., are already available as plug-and-play connectors with reliable, intuitive SaaS solutions. Hevo Data is a highly reliable and intuitive data pipeline platform used by data engineers from 40+ countries to set up and run low-latency ELT pipelines with zero maintenance. Boasting more than 150 out-of-the-box connectors that can be set up in minutes, Hevo also allows you to monitor and control your pipelines. You get: real-time data flow visibility, fail-safe mechanisms, and alerts if anything breaks; preload transformations and auto-schema mapping precisely control how data lands in your destination; models and workflows to transform data for analytics; and reverse-ETL capability to move the transformed data back to your business software to inspire timely action. All of this, plus its transparent pricing and 24*7 live support, makes it consistently voted by users as the Leader in the Data Pipeline category on review platforms like G2. Go to dataengineeringpodcast.com/hevodata and sign up for a free 14-day trial that also comes with 24×7 support. Your host is Tobias Macey and today I’m interviewing Shane Gibson about how to bring Agile practices to your data management workflows Interview Introduction How did you get involved in the area of data management? Can you describe what AgileData is and the story behind it? What are the main industries and/or use cases that you are focused on supporting? The data ecosystem has been trying on different paradigms from software development for some time now (e.g. DataOps, version control, etc.). What are the aspects of Agile that do and don’t map well to data engineering/analysis? One of the perennial challenges of data analysis is how to approach data modeling. How do you balance the need to provide value with the long-term impacts of incomplete or underinformed modeling decisions made in haste at the beginning of a project? How do you design in affordances for refactoring of the data models without breaking downstream assets? Another aspect of implementing data products/platforms is how to manage permissions and governance. What are the incremental ways that those principles can be incorporated early and evolved along with the overall analytical products? What are some of the organizational design strategies that you find most helpful when establishing or training a team who is working on data products? In order to have a useful target to work toward it’s necessary to understand what the data consumers are hoping to achieve. What are some of the challenges of doing requirements gathering for data products? (e.g. not knowing what information is available, consumers not understanding what’s hard vs. easy, etc.) How do you work with the "customers" to help them understand what a reasonable scope is and translate that to the actual project stages for the engineers? What are some of the perennial questions or points of confusion that you have had to address with your clients on how to design and implement analytical assets? What are the most interesting, innovative, or unexpected ways that you have seen agile principles used for data? What are the most interesting, unexpected, or challenging lessons that you have learned while working on AgileData? When is agile the wrong choice for a data project? What do you have planned for the future of AgileData? Contact Info LinkedIn @shagility on Twitter Parting Question From your perspective, what is the biggest gap in the tooling or technology for data management today? Closing Announcements Thank you for listening! Don’t forget to check out our other shows. Podcast.__init__ covers the Python language, its community, and the innovative ways it is being used. The Machine Learning Podcast helps you go from idea to production with machine learning. Visit the site to subscribe to the show, sign up for the mailing list, and read the show notes. If you’ve learned something or tried out a project from the show then tell us about it! Email hosts@dataengineeringpodcast.com) with your story. To help other people find the show please leave a review on Apple Podcasts and tell your friends and co-workers Links AgileData OptimalBI How To Make Toast Data Mesh Information Product Canvas DataKitchen Podcast Episode Great Expectations Podcast Episode Soda Data Podcast Episode Google DataStore Unfix.work Activity Schema Podcast Episode Data Vault Podcast Episode Star Schema Lean Methodology Scrum Kanban The intro and outro music is from The Hug by The Freak Fandango Orchestra / CC BY-SA1 comments1
Podcast hosts
- blarghmatey
@blarghmatey
© 2023 Boundless Notions, LLC.